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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Secure Computing Systems

� Overall goal: Secure the data
manipulated by a computing system

� Enforce a security policy
� Confidentiality: Secret data does not leak to

non-secret places

� Integrity: High-integrity data is not influenced
by low-integrity data
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Information Flow

� Goal of information flow analysis:

Check whether information from one
”place” propagates to another ”place”
� For program analysis, ”place” means, e.g.,

code location or variable

� Complements techniques that impose
limits on releasing information
� Access control lists
� Cryptography



9



16

Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}
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Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Secret information
propagates to x

Secret information
(partly) propagates
to visible
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;

Low-integrity information
propagates to high-integrity
variable
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}



17

Example: Integrity

userInput should not influence who
becomes president

Low-integrity information
propagates to high-integrity
variable

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}
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Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)
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Tracking Security Labels

How to analyze the flow of information?

� Assign to each value some meta
information that tracks the secrecy of
the value

� Propagate meta information on
program operations
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Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

� Variation of confidential input does not cause a
variation of public output

� Attacker cannot observe any difference between
two executions that differ only in their confidential
input
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Lattice of Security Labels

How to represent different levels of
secrecy?

� Set of security labels

� Form a universally bounded lattice
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Flow Relation

� Partial order on security classes
defines a flow relation

� Program is secure if and only if all
information flows are described by the
flow relation

� Intuition: No flow from higher to lower
security class
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Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

Goal:
No flow from
source to sink
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Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink
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Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink
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Declassification

� ”No flow from high to low” is impractical

� E.g., code that checks password against a hash
value propagates information to subsequence
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}
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Declassification

� ”No flow from high to low” is impractical

� E.g., code that checks password against a hash
value propagates information to subsequence
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
� Detect vulnerable code (e.g, potential SQL

injections)

� Detect malicious code (e.g., privacy violations)

� Check if program behaves as expected (e.g.,
secret data should never be written to console)
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Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence
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Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}
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Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x> 1000 to visible
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Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

Some analyses consider
only these

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x> 1000 to visible
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Static and Dynamic Analysis

� Static information flow analysis
� Overapproximate all possible data and control

flow dependences
� Result: Whether information ”may flow” from

secret source to untrusted sink

� Dynamic information flow analysis
� Associate security labels (”taint markings”)

with memory locations
� Propagate labels at runtime
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Static and Dynamic Analysis

� Static information flow analysis
� Overapproximate all possible data and control

flow dependences
� Result: Whether information ”may flow” from

secret source to untrusted sink

� Dynamic information flow analysis
� Associate security labels (”taint markings”)

with memory locations
� Propagate labels at runtime

Focus of rest of this lecture



34

Taint Sources and Sinks

� Possible sources:
� Variables
� Return values of a

particular function
� Data from a type of

I/O stream
� Data from a

particular I/O stream
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Taint Sources and Sinks
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� Parameters given to

a particular function
� Instructions of a

particular type (e.g.,
jump instructions)
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Taint Sources and Sinks

� Possible sources:
� Variables
� Return values of a

particular function
� Data from a type of

I/O stream
� Data from a

particular I/O stream

Report illegal flow if taint marking flows
to a sink where it should not flow

� Possible sinks:
� Variables
� Parameters given to

a particular function
� Instructions of a

particular type (e.g.,
jump instructions)
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Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label(result)← label(inp1)⊕ ...⊕ label(inp2)
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Taint Propagation (2)

2) Implicit flows
� Maintain security stack S: Labels of all values

that influence the current flow of control

� When x influences a branch decision at location
loc, push label(x) on S

� When control flow reaches immediate
post-dominator of loc, pop label(x) from S

� When an operation is executed while the S is
non-empty, consider all labels on S as input to the
operation



14



38

Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
� Security classes:

public, secret
� Source: getX
� Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?
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Outline

1. Introduction

2. Information Flow Policy
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4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
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� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
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Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
� Security classes:

public, secret
� Source: getX
� Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?
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Hidden Implicit Flows

� Implicit flows may happen even
though a branch is not executed

� Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;
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Hidden Implicit Flows

� Implicit flows may happen even
though a branch is not executed

� Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;

Copies secret into x

But: Execution where
secret is false does not
propagate anything
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Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
� Conservatively overapproximate which values

may be defined in b1

� Add spurious definitions into b2
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Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
� Conservatively overapproximate which values

may be defined in b1

� Add spurious definitions into b2

var x = false;
if (secret)
x = true;

else
x = x; // spurious definition

All executions propagate
”secret” label to x
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Implementation in Dytan

Dynamic information flow analysis for
x86 binaries

� Taint markings stored as bit vectors

� One bit vector per byte of memory

� Propagation implemented via instrumentation
(i.e., add instructions to existing program)

� Computes immediate post-dominators via static
control flow graph
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Information Flow: Summary

� Information flow analysis:
Track secrecy of information handled by program

� Goal: Check information flow policy
� Security classes, sources, sinks

� Various applications
� E.g., malware detection, check for

vulnerabilities

� There exist channels missed by information flow
analysis
� E.g., power consumption, timing


