Cristian-Alexandru Staicu and Dr. Michael Pradel

Software Lab, TU Darmstadt

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows
4. Implementation

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

12

Secure Computing Systems

= Overall goal: Secure the data
manipulated by a computing system

= Enforce a security policy

o Confidentiality: Secret data does not leak to
non-secret places

o Integrity: High-integrity data is not influenced
by low-integrity data

13

Information Flow

= Goal of information flow analysis:

Check whether information from one
“place” propagates to another “place”

o For program analysis, "place” means, e.g.,
code location or variable

= Complements techniques that impose

limits on releasing information
1 Access control lists
o Cryptography

14

-
-
.

B ?Lo\C&.—
P
ﬂ‘)WM M
Lheld dev
ta

U
wt e M

ple o

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 1234;
var X = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

16

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 123:17 Secret information
var X = creditCa.rdNb; propagates o x
var visible = false;

if (x > 1000) {
visible = true; ~——— Secret information

} (partly) propagates
fo visible

16

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident
var x = userInput();
var designatedPresident

"Michael";

I
Ky

17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
var designatedPresident = x;

\

Low-integrity information
propagates to high-integrity
variable

17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael';
var x = userInput();
if (x.length === 5) {

var designatedPresident = "Paul";
}

17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
if (x.length ===15) { =

var designatedPresident = "PaulN
}

Low-integrity information
propagates to high-integrity
variable

17

Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)

18

Tracking Security Labels

How to analyze the flow of information?

= Assign to each value some meta
information that tracks the secrecy of
the value

= Propagate meta information on
program operations

19

E-}‘ Q.\A«r‘—u

Secﬂ‘(/{_ V‘M

4

contoiias secret-
var creditCardNb §1234}

vk

)]

— . S P opm D D —

var = creditCardNb:

.-—v

var visible false:
0 Ox > Y000}

visible = true;

—
-— = —

}.

10

Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

m Variation of confidential input does not cause a
variation of public output

m Attacker cannot observe any difference between
two executions that differ only in their confidential
input

21

Outline

1. Introduction

2. Information Flow Policy -«
3. Analyzing Information Flows
4. Implementation

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

22

Lattice of Security Labels

How to represent different levels of
secrecy?

= Set of security labels
= Form a universally bounded lattice

23

e

Lathee : Exanples

®

H\‘j L TOYD Seer =
L l
Secrcht
Low L
CQV\F OQW/(“' af_
l
Putlic

< A-\’v\)w.s

ARC

L T

AR B C AC

ol
Y/

ottt waort secrth harn ¥l ew acaek CMM>

11

Ui ver sy, Rowmolid lather
-)
T (S>>, L. T, ® . ®)

e v S .. sek 6’,\— y_mm:) cfosseo
{kBQ, AB1 K<, ISCI A“B‘ <\ p.}

— _. Pa:'ek‘aut oo S (sec &wa}

. Lo bourdl I 4
ABC

@ 3 (oot —PA Lowdl br“‘*t“ \

\~V\';°‘v\ \ (,-3, A& @k = AR

® .. S(UV_‘,LA, lodee wouward a'e—&rav+o/ .

ofirsteR o L:), ABC O C =

CxS — 8§
dovo P;C'u/" 5‘, ;,,\,(-orma\;l-{@u\.)

D Aac s KRE
SkS — S
C

12

OJsA;\'t" Wha et 5,‘, M Xu«e‘u‘b\(\' s a wumyv. bowndid La\'{'(\‘a,.?
® @ w O A ® i
3/ \)C_ RJ;.,- ® < :1
N S L | >
D Raz A = z
N)
i 1
Mt oo Sprr Lowads N
(B, €, A, buk woire o
Ve Mg ek - beward WO - ARpe” V\

(rnfrwit)

13

Flow Relation

= Partial order on security classes
defines a flow relation

= Program is secure if and only if all
information flows are described by the
flow relation

= Intuition: No flow from higher to lower
security class

27

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

Goal:
No flow from
source to sink

28

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

var creditCardNb = 1234;
Goal: var X = creditCardNb;

No flow from var visible = false;
if (x > 1000) {

source to sink visible = true;

} 28

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information

m Untrusted sinks x
var creditCardNb =|1234;
Goal: var x = creditCardNb;
No ﬂow from var|visible |= false;

] if (x > 1000) {
source to sink visible = true;

} 28

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequence

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}

29

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequence

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23]
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value 29

Outline

1. Introduction
2. Information Flow Policy

3. Analyzing Information Flows <«
4. Implementation

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

30

Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
m Detect vulnerable code (e.g, potential SQL
Injections)
m Detect malicious code (e.g., privacy violations)

m Check if program behaves as expected (e.q.,
secret data should never be written to console)

31

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

32

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

32

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

} x> 1000 t0ovisible

Explicit flow from

32

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence +—__ Some analyses consider

only these
= Implicit flows: Caused by control flow

dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

) x> 1000 t0ovisible

Explicit flow from

32

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information "may flow” from
secret source to untrusted sink

= Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

33

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information "may flow” from
secret source to untrusted sink

a| Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

Focus of rest of this lecture 33

Taint Sources and Sinks

= Possible sources:
o Variables
o Return values of a
particular function
o Data from a type of
/O stream
o Data from a
particular 1/0O stream

34

Taint Sources and Sinks

= Possible sources:
o Variables
o Return values of a
particular function
o Data from a type of
/O stream
o Data from a
particular 1/0O stream

= Possible sinks:
o Variables
o Parameters given to
a particular function
o Instructions of a
particular type (e.g.,
jump instructions)

34

Taint Sources and Sinks

s Possible sources: = Possible sinks:

o Variables o Variables
o Return values of a 0 Parameters given to
particular function a particular function
o Data from a type of o Instructions of a
/O stream particular type (e.g.,
o Data from a jump instructions)

particular 1/0O stream

Report illegal flow if taint marking flows
to a sink where it should not flow

34

Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label (result) < label(inpy) @ ... B label(inp)

35

Taint Propagation (2)

2) Implicit flows

Maintain security stack S: Labels of all values
that influence the current flow of control

When z influences a branch decision at location
loc, push label(x) on S

When control flow reaches immediate
post-dominator of loc, pop label(x) from S

When an operation is executed while the S is
non-empty, consider all labels on S as input to the

operation
36

Gxow\..r,\b A
?QUo‘g : - &Lc,wv{{—:,) Aassen 3 «ov»(q\n ¢, secrut)
— SOWwreg ¢ V'&r\'o»‘o\.(_ - C,“‘CO&H—CW ‘\[\9

— S:\ \/VL‘-” \f&l\\a\’lgu “\/CS\'LQL(/ -

Lol (creotitCamd Nb) = seerh

var creditCardNb = 1234; = bttt (o = bl () = seerot

var x = creditCardNb; labet (visible) = putlic
var visible false: «—

. N w oA macollake okt b;
if (x > 1000) f‘*’i"“)0 ek () @ sl (1900
visible = true; bl (6} = - seerch

i ~ scwth @ Pw‘?‘«‘c
\ Fw:o\/\ SechA' O\ S A
o~ S ot o I~
Lon bt P SZD LI

. = Secvedh bel ()
LlabeAl LV\S’\(DL") Z S{_:HA_
_> ol ow 0‘5(P@\icb

14

Example 2: Quiz

var x = getX(); PO"CY:
var y = X + 5; _
var z = true; m Security classes:
if (y === 10) public, secret
z = false; = Source: getX
foo(z) ; .
m Sink: foo ()

Suppose that getXx returns 5. Write down
the labels after each operation.

Is there a policy violation?

38

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows «——
4. Implementation

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

Example 2: Quiz

var x = getX(); PO"CY:
var y = X + 5; _
var z = true; m Security classes:
if (y === 10) public, secret
z = false; = Source: getX
foo(z) ; .
m Sink: foo ()

Suppose that getXx returns 5. Write down
the labels after each operation.

Is there a policy violation?

16

Ex &M«fh Z

label (x)= scerot

var X = getX(); / L,,va,vuv)-z Ll (¢) @ (abl(5)

= seeret
Varyzx+5;/)

= Llle
var Z = ‘true; _ labkek (2) P

—— — ikds b, Lok (b)= seeret
if (5_/ 1(?) S,MQ o
Z = false I — Kwty-‘/(L';:) = Sc.(t/r'(/‘% @ rwbl-lc. ':.S-(c.rg,‘l"
foo(z);

s Sl R o e comse. ¥ 1s secret

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;
1f (secret)

X = true;

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;]]
if (secret) Copies secret into x

X = true; But: Execution where

secret iS false does not
propagate anything

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,
and bg:
m Conservatively overapproximate which values

may be defined in b,
m Add spurious definitions into by

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,

and bQ:
m Conservatively overapproximate which values
may be defined in b,
m Add spurious definitions into by

var x = false; _
if (secret) All executions propagate

X = true; ’secret” label to x
else
x = X; // spurious definition

Outline

1. Introduction
2. Information Flow Policy

3. Analyzing Information Flows
4. Implementation =

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

Implementation in Dytan

Dynamic information flow analysis for
Xx86 binaries

m Taint markings stored as bit vectors
m One bit vector per byte of memory

m Propagation implemented via instrumentation
(i.e., add instructions to existing program)

m Computes immediate post-dominators via static
control flow graph

Information Flow: Summary

m Information flow analysis:
Track secrecy of information handled by program

m Goal: Check information flow policy
0 Security classes, sources, sinks

m Various applications
0 E.g., malware detection, check for
vulnerabilities

m There exist channels missed by information flow
analysis
o E.g., power consumption, timing

10

