
1

Program Testing and Analysis:

Information Flow Analysis

Cristian-Alexandru Staicu and Dr. Michael Pradel

Software Lab, TU Darmstadt



12

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



13

Secure Computing Systems

� Overall goal: Secure the data
manipulated by a computing system

� Enforce a security policy
� Confidentiality: Secret data does not leak to

non-secret places

� Integrity: High-integrity data is not influenced
by low-integrity data



14

Information Flow

� Goal of information flow analysis:

Check whether information from one
”place” propagates to another ”place”
� For program analysis, ”place” means, e.g.,

code location or variable

� Complements techniques that impose
limits on releasing information
� Access control lists
� Cryptography



9



16

Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}



16

Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Secret information
propagates to x

Secret information
(partly) propagates
to visible



17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;



17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;

Low-integrity information
propagates to high-integrity
variable



17

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}



17

Example: Integrity

userInput should not influence who
becomes president

Low-integrity information
propagates to high-integrity
variable

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}



18

Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)



19

Tracking Security Labels

How to analyze the flow of information?

� Assign to each value some meta
information that tracks the secrecy of
the value

� Propagate meta information on
program operations



10



21

Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

� Variation of confidential input does not cause a
variation of public output

� Attacker cannot observe any difference between
two executions that differ only in their confidential
input



22

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



23

Lattice of Security Labels

How to represent different levels of
secrecy?

� Set of security labels

� Form a universally bounded lattice



11



12



13



27

Flow Relation

� Partial order on security classes
defines a flow relation

� Program is secure if and only if all
information flows are described by the
flow relation

� Intuition: No flow from higher to lower
security class



28

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

Goal:
No flow from
source to sink



28

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



28

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
� Lattice of security classes
� Sources of secret information
� Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



29

Declassification

� ”No flow from high to low” is impractical

� E.g., code that checks password against a hash
value propagates information to subsequence
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}



29

Declassification

� ”No flow from high to low” is impractical

� E.g., code that checks password against a hash
value propagates information to subsequence
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value



30

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



31

Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
� Detect vulnerable code (e.g, potential SQL

injections)

� Detect malicious code (e.g., privacy violations)

� Check if program behaves as expected (e.g.,
secret data should never be written to console)



32

Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence



32

Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}



32

Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x> 1000 to visible



32

Explicit vs. Implicit Flows

� Explicit flows: Caused by data flow
dependence

� Implicit flows: Caused by control flow
dependence

Some analyses consider
only these

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x> 1000 to visible



33

Static and Dynamic Analysis

� Static information flow analysis
� Overapproximate all possible data and control

flow dependences
� Result: Whether information ”may flow” from

secret source to untrusted sink

� Dynamic information flow analysis
� Associate security labels (”taint markings”)

with memory locations
� Propagate labels at runtime



33

Static and Dynamic Analysis

� Static information flow analysis
� Overapproximate all possible data and control

flow dependences
� Result: Whether information ”may flow” from

secret source to untrusted sink

� Dynamic information flow analysis
� Associate security labels (”taint markings”)

with memory locations
� Propagate labels at runtime

Focus of rest of this lecture



34

Taint Sources and Sinks

� Possible sources:
� Variables
� Return values of a

particular function
� Data from a type of

I/O stream
� Data from a

particular I/O stream



34

Taint Sources and Sinks

� Possible sources:
� Variables
� Return values of a

particular function
� Data from a type of

I/O stream
� Data from a

particular I/O stream

� Possible sinks:
� Variables
� Parameters given to

a particular function
� Instructions of a

particular type (e.g.,
jump instructions)



34

Taint Sources and Sinks

� Possible sources:
� Variables
� Return values of a

particular function
� Data from a type of

I/O stream
� Data from a

particular I/O stream

Report illegal flow if taint marking flows
to a sink where it should not flow

� Possible sinks:
� Variables
� Parameters given to

a particular function
� Instructions of a

particular type (e.g.,
jump instructions)



35

Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label(result)← label(inp1)⊕ ...⊕ label(inp2)



36

Taint Propagation (2)

2) Implicit flows
� Maintain security stack S: Labels of all values

that influence the current flow of control

� When x influences a branch decision at location
loc, push label(x) on S

� When control flow reaches immediate
post-dominator of loc, pop label(x) from S

� When an operation is executed while the S is
non-empty, consider all labels on S as input to the
operation



14



38

Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
� Security classes:

public, secret
� Source: getX
� Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?



3

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



4

Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
� Security classes:

public, secret
� Source: getX
� Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?



16



6

Hidden Implicit Flows

� Implicit flows may happen even
though a branch is not executed

� Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;



6

Hidden Implicit Flows

� Implicit flows may happen even
though a branch is not executed

� Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;

Copies secret into x

But: Execution where
secret is false does not
propagate anything



7

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
� Conservatively overapproximate which values

may be defined in b1

� Add spurious definitions into b2



7

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
� Conservatively overapproximate which values

may be defined in b1

� Add spurious definitions into b2

var x = false;
if (secret)
x = true;

else
x = x; // spurious definition

All executions propagate
”secret” label to x



8

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

4. Implementation

Mostly based on these papers:

� A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

� Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



9

Implementation in Dytan

Dynamic information flow analysis for
x86 binaries

� Taint markings stored as bit vectors

� One bit vector per byte of memory

� Propagation implemented via instrumentation
(i.e., add instructions to existing program)

� Computes immediate post-dominators via static
control flow graph



10

Information Flow: Summary

� Information flow analysis:
Track secrecy of information handled by program

� Goal: Check information flow policy
� Security classes, sources, sinks

� Various applications
� E.g., malware detection, check for

vulnerabilities

� There exist channels missed by information flow
analysis
� E.g., power consumption, timing


