
Program Analysis

– Project Description, Winter Semester 2023/24 –

Prof. Dr. Michael Pradel, Aryaz Eghbali, Beatriz Souza

November 4, 2023

1 Introduction

Program slicing is a type of program analysis that has multiple applications, one of which is locating
the root cause of a bug. In slicing, a subprogram is extracted based on some slicing criterion to reduce
the size of the code, which facilitates the downstream tasks. There are multiple slicing algorithms,
some of which are discussed during the lecture.

2 Project Description

The goal of this project is to implement dynamic backward slicing for Python. The exact choice
of the slicing algorithm is up to you, and in particular, you are not restricted to algorithms discussed
in the lecture. The project will be based on DynaPyt1, a general purpose framework for dynamically
analyzing Python. Your implementation should also be in Python. Given a Python program and a
slicing criterion, the final output of your analysis should keep only the code needed for the slice, e.g.,
by removing subtrees from the AST that are not part of the slice. To reduce the given source code
into the slice, libraries like LibCST2 will be helpful for parsing, manipulating, and generating code.

2.1 Scope and Limitations

To help students focus on the main analysis and avoid the hassle of dealing with all of the language
features of Python, we narrow down the scope of programs that your implementation should be able
to handle:

• You will implement an intra-procedural analysis, which means your analysis is limited to the ex-
ecution inside a function. You can assume that any function that is called during the execution
of the analyzed function has the following side-effects:

– There is a data flow from any argument to the return value. E.g., z = foo(x) introduced
a data flow from x to z.

– If the call is a method call, then there is a data flow from the object on which the method
is called to the return value, from the arguments to the object on when the method is
called, and from the arguments to the return value. E.g., z = y.foo(x) introduces data
flows y → z, x → y, and x → z.

– There are no other side-effects, i.e., a called functionis assumed to not change the values
of any non-local variables or objects.

• Calls to exec and eval, and with statements are considered out of the scope of this project, and
will not appear in our test cases.

• The left-hand side of every assignment (or augmented assignment) is either a variable (foo=),
an attribute access (foo.bar=), or an index access (foo[bar]=).

1https://github.com/sola-st/DynaPyt
2https://github.com/Instagram/LibCST

1

https://github.com/sola-st/DynaPyt
https://github.com/Instagram/LibCST


• Your analysis should be able to handle complex objects and arrays, but you can assume that
any modifications to the object or array causes a dataflow edge to any read of attributes or any
index accesses of the object or array.

• When slicing the function, all function arguments remain intact, even if an argument is not
needed in the slice.

• There are no definitions of other functions or classes inside the analyzed function.

3 Milestones

The project is broken down into three milestones for better guidance throughout the semester. Each
milestone has a progress meeting, in which each student meets with her/his mentor, presents the
deliverable, and seeks help if needed. Please create a private GitHub repository for your project
and give read access to your mentor. Some code templates have been prepared for this project, on
top of which you should implement your solution. The template is provided as a Python package
name dynamicslicing. Please adhere to the output format shown in the provided test cases, as the
output of your program will be automatically tested.

3.1 Milestone 1 (Progress Meeting in Week of Nov 20–24, 2023)

In the first part of the project you will familiarize yourself with DynaPyt by implementing a simple
dynamic analysis. Furthermore, you will also implement utility methods that are required for manip-
ulating the source code and for printing the final result. On the progress meeting of this milestone,
course participants are expected to have implemented the following:

1. A dynamic analysis in DynaPyt that each time a variable is being written to, prints the value
being written. This analysis must be implemented in dynamicslicing/trace writes.py. For
example, in the following program

def slice_me():

x = 5

print("Hello World")

if x < 10:

x += 5

y = 0

return y

slice_me()

the output (including both analysis output and program output) should be

5

Hello World

10

0

As a starting point, we suggest working through this tutorial.

2. A function that, given the path of a Python file and a set of code lines to keep, removes nodes
from the syntax tree that are not on these lines. To this end, the function should parse the code,
e.g., with LibCST, manipulate the syntax tree, and then return the new code. This function
should be implemented in dynamicslicing/utils.py as the remove lines function. For example,
given the above source code and lines [1, 2, 4, 5, 9], the function should produce

def slice_me():

x = 5

if x < 10:

x += 5

slice_me()

2

https://github.com/sola-st/DynaPyt
https://github.com/sola-st/DynaPyt/tree/main/tutorial


Note that the correctness evaluation is based on LibCST’s deep equals on the root of the syntax
trees. For your reference, there is a sample code that uses LibCST to negate the condition of
if statements on odd lines. This sample is implemented in dynamicslicing/utils.py in the
OddIfNegation class and the negate odd ifs function. There is a naive solution to this part of
Milestone 1, which is to remove the lines directly from the string representation of the code.
However, this naive can result in syntax errors in the resulting code, which is why you should
implement a syntax tree-based solution.

3.2 Milestone 2 (Progress Meeting in Week of Dec 11–15, 2023)

The expectation for this milestone is that each student has implemented dynamic program slicing
based on data-flow dependencies.
This analysis must be implemented in dynamicslicing/slice dataflow.py as the SliceDataflow class.
For the following example,

def slice_me():

x = 1

y = 2

x = x + y

y += 2

return y # slicing criterion

slice_me()

the correct output is

def slice_me():

y = 2

y += 2

return y # slicing criterion

slice_me()

This output should be written to a file named sliced.py in the same directory as the input file. Note
that you should not change the signature of the constructor of SliceDataflow.

Each input for this milestone consists of an input Python file, which is the program to be sliced,
containing a comment, which gives the slicing criterion. Note that all variables used in the line
containing the comment are part of the slicing criterion. You can safely assume that, in this milestone,
the input code consists only of functions with a single control flow path, i.e., no branches.

You can test your code using pytest tests --only milestone2. You can, and are strongly encour-
aged to, add your own test cases to the tests/milestone2 directory. Each test case consists of one
program file and one expected output file, bundled in a directory, similar to the provided test cases.

3.3 Milestone 3 (Progress Meeting in Week of Jan 15–19, 2024)

It is expected that each course participant has implemented the complete slicing algorithm, including
both data-flow and control-flow dependencies.
This analysis must be implemented in dynamicslicing/slice.py as the Slice class. For example, the
output of your implementation for

def slice_me():

x = 1

y = 2

z = 3

if x < 4:

y += 2

if x > 0:

z -= 5

return y # slicing criterion

3



slice_me()

should be

def slice_me():

x = 1

y = 2

if x < 4:

y += 2

return y # slicing criterion

slice_me()

This output should be written to a file named sliced.py in the same directory as the input file.
Similar to the second milestone, the input of your analysis is a Python file containing a comment,
which indicate the program to be sliced and the slicing criterion, respectively. Note that similar
to the previous milestone, you can test your analysis with PyTest and you should not change the
signature of the constructor of the analysis class.

4 Installation Guidelines

Please refer to DynaPyt’s tutorial and documentation for installation instructions. To install your
analysis as a package, run the following from the root directory of the project:

pip install -r requirements.txt

pip install -e .

5 Running and Testing Your Code

5.1 Implementation & Execution

You should implement your analyses in the appropriate files described above, and must not change any
function signature from the provided skeleton code. Your implementation for all milestones should
generate a file named sliced.py beside the input file with the output required in that milestone. You
can use Python versions between 3.6 and 3.10 (inclusive) for your implementation. We suggest using
a virtual environment to install the dependencies and run your code.

5.2 Testing

For the first milestone, you are supposed to run DynaPyt’s instrumentation script and analysis using
its command line interface (CLI). For the second and third milestones, you can use pytest to run
your analysis on the test cases provided in the tests directory.

To run the test cases in the tests directory, you can use the following command:

pytest tests

To run the tests for one of the milestones only, run:

pytest tests --only tests/milestoneX

where milestoneX can be milestone2 or milestone3. In addition to the provided test cases, we strongly
recommend to test your code with additional test cases. To add test cases, you should create an
input file, named program.py, and an expected output file, named expected.py. Your implementation
will be evaluated with test cases that are not provided to you.

For consistency and to ease the task, all input code files follow this convention:

• There is a single function definition, with the function called slice me, which is the function to
be sliced.

• The last statement in the file is a call to the slice me function.

The examples given above follow this convention.

4

https://github.com/sola-st/DynaPyt/tree/main/tutorial


6 Mentoring and How to Submit

Each student has a mentor, either Aryaz Eghbali (aryaz.eghbali@iste.uni-stuttgart.de) or Beatriz
Souza (beatrizbzsouza@gmail.com). Students must meet their mentor at least three times during the
semester, on the dates indicated for the milestones. In addition, students may consult their mentor
to resolve any questions, to ensure progress in the right direction, and to help you submit a successful
project in time. We also recommend to ask general questions in the Ilias forum.

The deadline for submitting the project is at 11:59 PM on February 1, 2024. This deadline is
firm. The submission will be via Ilias and should include:

• A scientific report of at most four pages that summarizes the approach taken, the results
obtained, and any shortcomings you are aware of.

• A .zip file of the dynamicslicing directory (the top directory which includes src, tests, etc.)
with your implementation. Your implementation will be evaluated automatically, by installing
it and running PyTest. Please do not change the interface of the analysis classes.

Each person must present the project on the week of February 5–9, 2024, in a short talk, followed
by a question and answer session.

The project is individual, i.e., students must work by themselves and not share their solution with
anyone else. Any form of collaboration that results in similar or identical solutions being submitted
will be punished according to the usual rules for plagiarism.

Grading will be based on the following criteria:

Criterion Contribution

Progress meetings and final presentation (progress made, clarity, illustration,
quality of answers)

25%

Implementation (completeness, documentation) 25%
Results (soundness, reproducibility) 25%
Report (clarity, illustration, discussion and interpretation of the results) 25%

5


	Introduction
	Project Description
	Scope and Limitations

	Milestones
	Milestone 1 (Progress Meeting in Week of Nov 20–24, 2023)
	Milestone 2 (Progress Meeting in Week of Dec 11–15, 2023)
	Milestone 3 (Progress Meeting in Week of Jan 15–19, 2024)

	Installation Guidelines
	Running and Testing Your Code
	Implementation & Execution
	Testing

	Mentoring and How to Submit

