
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Symbolic and Concolic Execution



2 - 1

Warm-up Quiz

print("\n")
print("\\n")
print(r"\\n")
print(r"\\\n")

How many lines does this Python code
print?

4 None5 6



2 - 2

Warm-up Quiz

print("\n")
print("\\n")
print(r"\\n")
print(r"\\\n")

How many lines does this Python code
print?

4 None5 6



2 - 3

Warm-up Quiz

print("\n")
print("\\n")
print(r"\\n")
print(r"\\\n")

How many lines does this Python code
print?

4 None5 6

Normal string: Backslash is
an escape character

Raw string: Backslash is
kept as-is



2 - 4

Warm-up Quiz

print("\n")
print("\\n")
print(r"\\n")
print(r"\\\n")

How many lines does this Python code
print?

4 None5 6

Normal string: Backslash is
an escape character

Raw string: Backslash is
kept as-is

Output:

\n

\\n

\\\n



3

Overview

1. Classical Symbolic Execution

2. Challenges of Symbolic Execution

3. Concolic Testing

4. Large-Scale Application in Practice

Mostly based on these papers:

■ DART: directed automated random testing, Godefroid et al.,
PLDI’05

■ KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs, Cadar
et al., OSDI’08

■ Automated Whitebox Fuzz Testing, Godefroid et al., NDSS’08



4

Symbolic Execution

■ Reason about behavior of program by
”executing” it with symbolic values

■ Originally proposed by James King
(1976, CACM) and Lori Clarke (1976,
IEEE TSE)

■ Became practical around 2005
because of advances in constraint
solving (SMT solvers)



5

Example

function f(a, b, c) {
var x = y = z = 0;
if (a) {
x = -2;

}
if (b > 5) {
if (!a && c) {
y = 1;

}
z = 2;

}
assert(x + y + z != 3);

}



79



80



7

Execution Tree

All possible execution paths

■ Binary tree

■ Nodes: Conditional statements

■ Edges: Execution of sequence
on non-conditional statements

■ Each path in the tree represents
an equivalence class of inputs

t f

t f t f

t f

t f



8

Quiz

Draw the execution tree for this function. How many
nodes and edges does it have?

function f(x,y) {
var s = "foo";
if (x < y) {
s += "bar";
console.log(s);

}
if (y === 23) {
console.log(s);

}
}



81



9 - 1

Symbolic Values and Symbolic State

■ Unknown values, e.g., user inputs, are kept
symbolically

■ Symbolic state maps variables to symbolic values

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}



9 - 2

Symbolic Values and Symbolic State

■ Unknown values, e.g., user inputs, are kept
symbolically

■ Symbolic state maps variables to symbolic values

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}

Symbolic input
values: x0, y0

Symbolic state:
z = x0 + y0



10 - 1

Path Conditions

Quantifier-free formula over the symbolic
inputs that encodes all branch decisions
taken so far

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}



10 - 2

Path Conditions

Quantifier-free formula over the symbolic
inputs that encodes all branch decisions
taken so far

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}

Path condition:
x0 + y0 > 0



11

Satisfiability of Formulas

Determine whether a path is feasible:
Check if its path condition is satisfiable
■ Done by powerful SMT/SAT solvers

□ SAT = satisfiability,
SMT = satisfiability modulo theory

□ E.g., Z3, Yices, STP

■ For a satisfiable formula, solvers also provide a
concrete solution

■ Examples:
□ a0 + b0 > 1: Satisfiable, one solution: a0 = 1, b0 = 1

□ (a0 + b0 < 0)∧ (a0 − 1 > 5)∧ (b0 > 0): Unsatisfiable



12

Applications of Symbolic Execution

■ General goal: Reason about behavior of program

■ Basic applications
□ Detect infeasible paths

□ Generate test inputs

□ Find bugs and vulnerabilies

■ Advanced applications
□ Generating program invariants

□ Prove that two pieces of code are equivalent

□ Debugging

□ Automated program repair



13

Overview

1. Classical Symbolic Execution

2. Challenges of Symbolic Execution

3. Concolic Testing

4. Large-Scale Application in Practice

Mostly based on these papers:

■ DART: directed automated random testing, Godefroid et al.,
PLDI’05

■ KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs, Cadar
et al., OSDI’08

■ Automated Whitebox Fuzz Testing, Godefroid et al., NDSS’08



14 - 1

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers



14 - 2

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers



82



16

Dealing with Large Execution Trees

Heuristically select which
branch to explore next

■ Select at random

■ Select based on coverage

■ Prioritize based on distance
to ”interesting” program
locations

■ Interleaving symbolic
execution with random testing

t f

t f t f

t f

t f

... ... ...

...

... ...



17 - 1

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers



17 - 2

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers



18

Modeling the Environment

■ Program behavior may depend on parts of
system not analyzed by symbolic execution

■ E.g., native APIs, interaction with network, file
system accesses

var fs = require("fs");
var content = fs.readFileSync("/tmp/foo.txt");
if (content === "bar") {
...

}



19

Modeling the Environment (2)

Solution implemented by KLEE
■ If all arguments are concrete, forward to OS

■ Otherwise, provide models that can handle
symbolic files
□ Goal: Explore all possible legal interactions

with the environment
var fs = {
readFileSync: function(file) {
// doesn’t read actual file system, but
// models its effects for symbolic file names

}
}



20 - 1

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers



20 - 2

Problems of Symbolic Execution

■ Loops and recursion: Infinite execution trees

■ Path explosion: Number of paths is exponential in
the number of conditionals

■ Environment modeling: Dealing with
native/system/library calls

■ Solver limitations: Dealing with complex path
conditions

■ Heap modeling: Symbolic representation of data
structures and pointers

One approach: Mix symbolic
with concrete execution



21

Overview

1. Classical Symbolic Execution

2. Challenges of Symbolic Execution

3. Concolic Testing

4. Large-Scale Application in Practice

Mostly based on these papers:

■ DART: directed automated random testing, Godefroid et al.,
PLDI’05

■ KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs, Cadar
et al., OSDI’08

■ Automated Whitebox Fuzz Testing, Godefroid et al., NDSS’08



22

Concolic Testing

Mix concrete and symbolic execution =
”concolic”

■ Perform concrete and symbolic execution
side-by-side

■ Gather path constraints while program executes

■ After one execution, negate one decision, and
re-execute with new input that triggers another
path



23

Example

function double(n) {
return 2 * n;

}

function testMe(x, y) {
var z = double(y);
if (z === x) {
if (x > y + 10) {
throw "Error";

}
}

}



83



84



85



86



26

Algorithm

Repeat until all paths are covered

■ Execute program with concrete input i and collect
symbolic constraints at branch points: C

■ Negate one constraint to force taking an
alternative branch b′: Constraints C ′

■ Call constraint solver to find solution for C ′: New
concrete input i′

■ Execute with i′ to take branch b′

■ Check at runtime that b′ is indeed taken
Otherwise: ”divergent execution”



87



28

Benefits of Concolic Approach

When symbolic reasoning is impossible
or impractical, fall back to concrete
values

■ Native/system/API functions

■ Operations not handled by solver (e.g., floating
point operations)



29

Overview

1. Classical Symbolic Execution

2. Challenges of Symbolic Execution

3. Concolic Testing

4. Large-Scale Application in Practice

Mostly based on these papers:

■ DART: directed automated random testing, Godefroid et al.,
PLDI’05

■ KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs, Cadar
et al., OSDI’08

■ Automated Whitebox Fuzz Testing, Godefroid et al., NDSS’08



30

Large-Scale Concolic Testing

■ SAGE: Concolic testing tool developed at
Microsoft Research

■ Test robustness against unexpected inputs read
from files, e.g.,
□ Audio files read by media player
□ Office documents read by MS Office

■ Start with known input files and handle bytes read
from files as symbolic input

■ Use concolic execution to compute variants of
these files



31

Large-Scale Concolic Testing (2)

■ Applied to hundreds of applications

■ Over 400 machine years of computation from
2007 to 2012

■ Found hundreds of bugs, including many security
vulnerabilties
□ One third of all the bugs discovered by file fuzzing

during the development of Microsoft’s Windows 7

Details: Bounimova et al., ICSE 2013



32

Summary: Symbolic & Concolic Testing

Solver-supported, whitebox testing

■ Reason symbolically about (parts of) inputs

■ Create new inputs that cover not yet explored
paths

■ More systematic but also more expensive than
random and fuzz testing

■ Open challenges
□ Effective exploration of huge search space
□ Other applications of constraint-based program

analysis, e.g., debugging and automated program
repair


