Program Analysis Program Slicing

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart Winter 2023/2024 What does the following JavaScript code print?

```
let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {
    z = x + y;
} else {
    z = x[y.length - 1];
}
console.log(z);
```

What does the following JavaScript code print?

```
let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {
    z = x + y;
} else {
    z = x[y.length - 1];
}
console.log(z);
Result: 1,2,12,3,2
```

Warm-up Quiz

What does the following JavaScript code print?

let x = [1, 2, 1];let y = [2, 3, 2];let z; if (Number.MIN_VALUE > 0) { z = x + y;} else { z = x[y.length - 1];console.log(z);**Result: 1,2,12,3,2**

MIN_VALUE: Smallest *positive* value that can be representated within floating point precision (Use negative_infinity for the overall smallest value)

What does the following JavaScript code print?

```
let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {
    z = x + y;  
} else {
                              Adding two arrays:
    z = x[y.length - 1];
                               Convert both to string
console.log(z);
                               and concatenate
Result: 1,2,12,3,2
```

Outline

- **1. Introduction**
- 2. Static Slicing
- 3. Dynamic Slicing

Mostly based on these papers:

- *Program Slicing*, Weiser., IEEE TSE, 1984
- Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
- A Survey of Program Slicing Techniques, Tip, J Prog Lang 1995

Program Slicing

Extract an executable subset of a program that (potentially) affects the values at a particular program location

- Slicing criterion = program location + variable
- An observer focusing on the slicing criterion cannot distinguish a run of the program from a run of the slice

```
var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
  sum = sum + i;
 prod = prod * i;
 i = i + 1;
}
console.log(sum);
console.log(prod);
```

```
var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
  sum = sum + i;
 prod = prod * i;
  i = i + 1;
                                Slice for value
}
console.log(sum); -
                                of sum at this
console.log(prod);
                                statement?
```

```
var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
  sum = sum + i;
  prod = prod * i;
  i = i + 1;
                                Slice for value
}
console.log(sum); <
                                of sum at this
console.log(prod);
                                statement?
```

```
var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
  sum = sum + i;
 prod = prod * i;
  i = i + 1;
                                Slice for value
}
console.log(sum);
                                of prod at this
console.log(prod);
                                statement
```

var n = readInput(); var i = 1;var sum = 0;Slice for value var prod = 1;of n at this while (i <= n) { statement sum = sum + i;prod = prod * i;i = i + 1;} console.log(sum); console.log(prod);

Why Do We Need Slicing?

Various applications, e.g.

- Debugging: Focus on parts of program relevant for a bug
- Program understanding: Which statements influence this statement?
- Change impact analysis: Which parts of a program are affected by a change? What should be retested?
- Parallelization: Determine parts of program that can be computed independently of each other

Slicing: Overview

Forward vs. backward

- Backward slice (our focus): Statements that influence the slicing criterion
- Forward slice: Statements that are influenced by the slicing criterion

Static vs. dynamic

- Statically computing a minimum slice is undecidable
- Dynamically computed slice focuses on particular execution/input

Outline

- **1. Introduction**
- 2. Static Slicing -
- 3. Dynamic Slicing

Mostly based on these papers:

- *Program Slicing*, Weiser., IEEE TSE, 1984
- Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
- A Survey of Program Slicing Techniques, Tip, J Prog Lang 1995

Static Program Slicing

Introduced by Weiser

(IEEE TSE, 1984)

- Various algorithms to compute slices
- Here: Graph reachability problem based on program dependence graph

Program Dependence Graph

Directed graph representing the data and control dependences between statements

Nodes:

- □ Statements
- Predicate expressions

Edges:

- Data flow dependences: One edge for each definition-use pair
- Control flow dependences

Variable Definition and Use

- A variable definition for a variable v is a basic block that assigns to v
 - v can be a local or global variable, parameter, or property
- A variable use for a variable v is a basic block that reads the value of v

□ In conditions, computations, output, etc.

Definition-Clear Paths

- A definition-clear path for a variable v is a path $n_1, ..., n_k$ in the CFG such that
 - n_1 is a variable definition for v
 - n_k is a variable use for v
 - No n_i (1 < $i \le k$) is a variable definition for v
 - \Box n_k may be a variable definition if each assignment to v occurs after a use

Note: Def-clear paths do not go from entry to exit

Definition-Use Pair

A definition-use pair (DU-pair) for a variable v is a pair of nodes (d, u) such that there is a definition-clear path d, ..., u in the CFG

Example: Data - Flor	w Dependencies			
	Def 1 2	3 4 3	5 6 7 8 9 10	
	1	>	<	
<pre>✓ var n = readInput();</pre>	Z	×	$\langle \times \times \times \rangle$	
2 var i = 1;	3		×××	
3 var sum = 0;	4		× ×	
S while (i <= n) {	2			
6 sum = sum + i;	6		\times \times	
<pre>prod = prod * i;</pre>	7		\times ×	
$\begin{cases} 1 = 1 + 1; \\ 1 \end{cases}$	Q	>	$\langle \times \times \times \rangle$	/
<pre> console.log(sum); </pre>	0	/		
<pre>10 console.log(prod);</pre>	٦ \			
	J)			

Control Flow Dependences

Post-dominator:

Node n_2 (strictly) post-dominates node $n_1 (\neq n_2)$ if every path $n_1, ..., exit$ in the control flow graph contains n_2

Control Flow Dependences

Post-dominator:

Node n_2 (strictly) post-dominates node $n_1 (\neq n_2)$ if every path $n_1, ..., exit$ in the control flow graph contains n_2

Control dependence:

Node n_2 is control-dependent on node $n_1 \neq n_2$ if \Box there exists a control flow path $P = n_1, ..., n_2$ where n_2 post-dominates any node in P (excluding n_1), and

 \square n_2 does not post-dominate n_1

Example: Contol-Flow	, Depender	icies					
	1) Strict	pust- 2	dornin 34	ators 5 6	78	7 10	
<pre>/ var n = readInput(); 2 var i = 1; 3 var sum = 0; 4 var prod = 1;</pre>	1	\times	\times ×	\times		\times ×	
	2	~	\times ×	\succ		\times \times	
	3		\times	\succ		$\times \times$	
	4		•	\times		$\times \times$	
S while (i <= n) {	5		•			\times ×	
6 sum = sum + i;	6			\times	\times κ	\times \times	
<pre>¬ prod = prod * i;</pre>	Ţ			\times	X	\times X	
8 i = i + 1;	8			\times		χ χ	
}	9					\times	
<pre> Console.log(sum); Console.log(prod); Console.log(p</pre>	10						
	$\sim \int (a_1 b_2)$	y = flor	~ deps	: 6 is	contol-	dependent	- On 5
		· · · · · ·	·	7	<u> </u>	~	5
				z		-	5

Computing Slices

Given:

- Program dependence graph G_{PD}
- Slicing criterion (n, V), where n is a statement
 and V is the set of variables defined or used at n

Slice for (n, V):

All statements from which n is reachable (i.e., all statements on which n depends)

Quiz

Draw the PDG and compute $slice(5, \{z\})$ **. What is the sum of**

- the number of nodes,
- the number of edges, and
- the number of statements in the slice?

Outline

- **1. Introduction**
- 2. Static Slicing
- 3. Dynamic Slicing

Mostly based on these papers:

- *Program Slicing*, Weiser., IEEE TSE, 1984
- Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
- A Survey of Program Slicing Techniques, Tip, J Prog Lang 1995

Dynamic Slicing

Various definitions

Here: Agrawal & Horgan, PLDI 1990

- Dynamic slice: Statements of an execution that must be executed to give a variable a particular value
 - □ For an execution, i.e., a particular input
 - Slice for one input may be different from slice for another input
- Useful, e.g., for debugging: Get a reduced program that leads to the unexpected value

Dynamic Slice (Simple Approach)

Given: Execution history

□ Sequence of PDG nodes that are executed

Slice for statement n and variable v:

- □ Keep only those PDG nodes that are in history
- Use static slicing approach (= graph reachability) on reduced PDG

```
var x = readInput();
if (x < 0) {
  y = x + 1;
  z = x + 2;
} else {
  if (x === 0) {
    y = x + 3;
    z = x + 4;
  } else {
    y = x + 5;
    z = x + 6;
  }
console.log(y);
console.log(z);
```

$$\frac{E_{x} comple : Dynamic Slicing (Simple Approach)}{luput : -1}$$

$$\frac{1}{1} var x = readInput();$$

$$2 if (x < 0) {
3 y = x + 1;
4 z = x + 2;
5 else {
5 if (x === 0) {
6 y = x + 3;
7 z = x + 4;
7 else {
8 y = x + 5;
9 z = x + 6;
7 }
10 console.log(y);
10 console.log(z);
3 dotA
7 dotA
7 dotA$$

Example 2: Quiz

<pre>var n = readInput();</pre>	// 1
var z = 0;	// 2
var y = 0;	// 3
var i = 1;	// 4
while (i <= n) {	// 5
z = z + y;	// 6
y = y + 1;	// 7
i = i + 1;	// 8
}	
console.log(z);	// 9

Example 2: Quiz

// 1

// 2

// 3

// 5

// 6

// 7

// 8

// 9

<pre>var n = readInput();</pre>
var z = 0;
var y = 0;
var i = 1;
while (i <= n) {
z = z + y;
y = y + 1;
i = i + 1;
}
console.log(z);

Draw the PDG and compute the dynamic slice for // 4 statement 9 and variable z, with input n=1. How many

statements are in the slice?

```
1 var n = readInput();
2 var z = 0;
3 var y = 0;
4 var i = 1;
5 while (i <= n) {
6 z = z + y;
7 y = y + 1;
8 i = i + 1;
}
9 console.log(z);
```

-) data

-> contol

Limitations of Simple Approach

- Multiple occurrences of a single statement are represented as a single PDG node
- Difference occurrences of a statement may have different dependences
 - □ All occurrences get conflated
- Slices may be larger than necessary

Dynamic Slice (Revised Approach)

Dynamic dependence graph

- Nodes: Occurrences of nodes of static PDG
- Edges: Dynamic data and control flow dependences

Slice for statement *n* and variables *V* that are defined or used at *n*:

- Compute nodes S_{dyn} that can reach any of the nodes that represent occurrences of n
- Slice = statements with at least one node in S_{dyn}

$$Example 2 (Revised Approach)$$

$$luqudt : 1$$

$$History: A, 2, 3, 4, 5, 6, 7, 8, 5, 9$$

$$\frac{1}{2} \frac{\text{var } n = \text{readInput}()}{\text{var } 1 = 1;}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{5} \frac{4}{5}$$

$$\frac{1}{5} \frac{2}{5} \frac{2}{5} \frac{2}{5}$$

$$O_{--} d_{1} u (9, \{2\})$$

- contol

Discussion: Dynamic Slicing

- May yield a program that, if executed with another input, does not give the same value for the slicing criterion than the original program
- Instead: Focuses on isolating statements that affect a particular value
 - Useful, e.g., for debugging and program understanding
- Other approaches exist, see F. Tip's survey (1995) for an overview

Outline

- **1. Introduction**
- 2. Static Slicing

3. Dynamic Slicing 🗸

Mostly based on these papers:

- *Program Slicing*, Weiser., IEEE TSE, 1984
- Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
- A Survey of Program Slicing Techniques, Tip, J Prog Lang 1995

$$\frac{\text{Example 2 (Revised Approach)}}{\text{luput : 1}}$$

$$\frac{1}{\text{History: } 1, 2, 3, 4, 5, 6, 7, 8, 5, 9}$$

$$\frac{1}{\text{Var n = readInput();}}{\text{Var z = 0;}}$$

$$\frac{1}{\text{Var x = 1 = 1;}}$$

$$\frac{1}{\text{Var i = 1;}}$$