
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Program Slicing

2 - 1

Warm-up Quiz

let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {

z = x + y;
} else {

z = x[y.length - 1];
}
console.log(z);

What does the following JavaScript code print?

2 - 2

Warm-up Quiz

let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {

z = x + y;
} else {

z = x[y.length - 1];
}
console.log(z);

What does the following JavaScript code print?

Result: 1,2,12,3,2

2 - 3

Warm-up Quiz

let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {

z = x + y;
} else {

z = x[y.length - 1];
}
console.log(z);

What does the following JavaScript code print?

Result: 1,2,12,3,2

MIN VALUE: Smallest
positive value that can
be representated
within floating point
precision
(Use NEGATIVE INFINITY

for the overall smallest
value)

2 - 4

Warm-up Quiz

let x = [1, 2, 1];
let y = [2, 3, 2];
let z;
if (Number.MIN_VALUE > 0) {

z = x + y;
} else {

z = x[y.length - 1];
}
console.log(z);

What does the following JavaScript code print?

Result: 1,2,12,3,2

Adding two arrays:
Convert both to string
and concatenate

3

Outline

1. Introduction

2. Static Slicing

3. Dynamic Slicing

Mostly based on these papers:

■ Program Slicing, Weiser., IEEE TSE, 1984
■ Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
■ A Survey of Program Slicing Techniques, Tip, J Prog Lang

1995

4

Program Slicing

Extract an executable subset of a
program that (potentially) affects the
values at a particular program location

■ Slicing criterion = program location + variable

■ An observer focusing on the slicing criterion
cannot distinguish a run of the program from a
run of the slice

5 - 1

Example

var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
sum = sum + i;
prod = prod * i;
i = i + 1;

}
console.log(sum);
console.log(prod);

5 - 2

Example

var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
sum = sum + i;
prod = prod * i;
i = i + 1;

}
console.log(sum);
console.log(prod);

Slice for value
of sum at this
statement?

5 - 3

Example

var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
sum = sum + i;
prod = prod * i;
i = i + 1;

}
console.log(sum);
console.log(prod);

Slice for value
of sum at this
statement?

5 - 4

Example

var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
sum = sum + i;
prod = prod * i;
i = i + 1;

}
console.log(sum);
console.log(prod);

Slice for value
of prod at this
statement

5 - 5

Example

var n = readInput();
var i = 1;
var sum = 0;
var prod = 1;
while (i <= n) {
sum = sum + i;
prod = prod * i;
i = i + 1;

}
console.log(sum);
console.log(prod);

Slice for value
of n at this
statement

6

Why Do We Need Slicing?

Various applications, e.g.
■ Debugging: Focus on parts of program relevant

for a bug

■ Program understanding: Which statements
influence this statement?

■ Change impact analysis: Which parts of a
program are affected by a change? What should
be retested?

■ Parallelization: Determine parts of program that
can be computed independently of each other

7

Slicing: Overview

Forward vs. backward
■ Backward slice (our focus): Statements that

influence the slicing criterion
■ Forward slice: Statements that are influenced by

the slicing criterion

Static vs. dynamic
■ Statically computing a minimum slice is

undecidable
■ Dynamically computed slice focuses on particular

execution/input

8

Outline

1. Introduction

2. Static Slicing

3. Dynamic Slicing

Mostly based on these papers:

■ Program Slicing, Weiser., IEEE TSE, 1984
■ Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
■ A Survey of Program Slicing Techniques, Tip, J Prog Lang

1995

9

Static Program Slicing

■ Introduced by Weiser
(IEEE TSE, 1984)

■ Various algorithms to compute slices

■ Here: Graph reachability problem
based on program dependence graph

10

Program Dependence Graph

Directed graph representing the data and
control dependences between
statements
■ Nodes:

□ Statements
□ Predicate expressions

■ Edges:
□ Data flow dependences: One edge for each

definition-use pair
□ Control flow dependences

11

Variable Definition and Use

■ A variable definition for a variable v is
a basic block that assigns to v

□ v can be a local or global variable, parameter,
or property

■ A variable use for a variable v is a
basic block that reads the value of v

□ In conditions, computations, output, etc.

12

Definition-Clear Paths

A definition-clear path for a variable v is
a path n1, .., nk in the CFG such that

■ n1 is a variable definition for v

■ nk is a variable use for v

■ No ni (1 < i ≤ k) is a variable definition for v
□ nk may be a variable definition if each assignment

to v occurs after a use

Note: Def-clear paths do not go from entry to exit

13

Definition-Use Pair

A definition-use pair (DU-pair) for a
variable v is a pair of nodes (d, u) such
that there is a definition-clear path d, .., u

in the CFG

54

15

Control Flow Dependences

■ Post-dominator:
Node n2 (strictly) post-dominates node n1(̸= n2)
if every path n1, ..., exit in the control flow graph
contains n2

17

Control Flow Dependences

■ Post-dominator:
Node n2 (strictly) post-dominates node n1(̸= n2)
if every path n1, ..., exit in the control flow graph
contains n2

■ Control dependence:
Node n2 is control-dependent on node n1 ̸= n2 if
□ there exists a control flow path P = n1, ..., n2 where

n2 post-dominates any node in P (excluding n1),
and

□ n2 does not post-dominate n1

55

20

Computing Slices

Given:
■ Program dependence graph GPD

■ Slicing criterion (n, V), where n is a statement
and V is the set of variables defined or used at n

Slice for (n, V):

All statements from which n is reachable
(i.e., all statements on which n depends)

56

22

Quiz
var x = 1; // 1
var y = 2; // 2
if (x < y) { // 3
y = x; // 4

}
var z = x; // 5

Draw the PDG and compute slice(5, {z}).
What is the sum of

■ the number of nodes,
■ the number of edges, and
■ the number of statements in the slice?

57

23

Outline

1. Introduction

2. Static Slicing

3. Dynamic Slicing

Mostly based on these papers:

■ Program Slicing, Weiser., IEEE TSE, 1984
■ Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
■ A Survey of Program Slicing Techniques, Tip, J Prog Lang

1995

24

Dynamic Slicing

■ Various definitions
Here: Agrawal & Horgan, PLDI 1990

■ Dynamic slice: Statements of an execution that
must be executed to give a variable a particular
value
□ For an execution, i.e., a particular input
□ Slice for one input may be different from slice for

another input

■ Useful, e.g., for debugging: Get a reduced
program that leads to the unexpected value

25

Dynamic Slice (Simple Approach)

■ Given: Execution history
□ Sequence of PDG nodes that are executed

■ Slice for statement n and variable v:
□ Keep only those PDG nodes that are in history

□ Use static slicing approach (= graph
reachability) on reduced PDG

26

Example 1
var x = readInput();
if (x < 0) {
y = x + 1;
z = x + 2;

} else {
if (x === 0) {
y = x + 3;
z = x + 4;

} else {
y = x + 5;
z = x + 6;

}
}
console.log(y);
console.log(z);

58

28 - 1

Example 2: Quiz

var n = readInput(); // 1
var z = 0; // 2
var y = 0; // 3
var i = 1; // 4
while (i <= n) { // 5
z = z + y; // 6
y = y + 1; // 7
i = i + 1; // 8

}
console.log(z); // 9

28 - 2

Example 2: Quiz

var n = readInput(); // 1
var z = 0; // 2
var y = 0; // 3
var i = 1; // 4
while (i <= n) { // 5
z = z + y; // 6
y = y + 1; // 7
i = i + 1; // 8

}
console.log(z); // 9

Draw the PDG
and compute the
dynamic slice for
statement 9 and
variable z, with
input n=1.

How many
statements are in
the slice?

59

29

Limitations of Simple Approach

■ Multiple occurrences of a single statement are
represented as a single PDG node

■ Difference occurrences of a statement may have
different dependences
□ All occurrences get conflated

■ Slices may be larger than necessary

30

Dynamic Slice (Revised Approach)

Dynamic dependence graph
■ Nodes: Occurrences of nodes of static PDG

■ Edges: Dynamic data and control flow
dependences

Slice for statement n and variables V that
are defined or used at n:
■ Compute nodes Sdyn that can reach any of the

nodes that represent occurrences of n

■ Slice = statements with at least one node in Sdyn

60

32

Discussion: Dynamic Slicing

■ May yield a program that, if executed with another
input, does not give the same value for the slicing
criterion than the original program

■ Instead: Focuses on isolating statements that
affect a particular value
□ Useful, e.g., for debugging and program

understanding

■ Other approaches exist, see F. Tip’s survey
(1995) for an overview

33

Outline

1. Introduction

2. Static Slicing

3. Dynamic Slicing

Mostly based on these papers:

■ Program Slicing, Weiser., IEEE TSE, 1984
■ Dynamic Program Slicing, Agrawal and Horgan, PLDI 1990
■ A Survey of Program Slicing Techniques, Tip, J Prog Lang

1995

✓

61

