Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024
1

Warm-up Quiz

What does this JavaScript code print?

function £(a,b) {
var X;
for (var i = 0; i < arguments.length; it++) {
X += arguments[i];
}

console.log(x) ;

}
£(1,2,3);

3 6 NaN Nothing

- 1

Warm-up Quiz

What does this JavaScript code print?

function £(a,b) {
var X;
for (var i = 0; i < arguments.length; it++) {
X += arguments[i];
}

console.log(x) ;

}
£(1,2,3);

3 6 Nothing

Warm-up Quiz

What does this JavaScript code print?

function £(a,b) {
var X;
for (var i = 0; i < arguments.length; it++) {
X += arguments[i]; L

} Array-like object
console.log(x) ;

} that contains all
£(1,2,3); three arguments

3 6 Nothing

-3

Warm-up Quiz

What does this JavaScript code print?

function f£(a,b) {

var x; 94— |nitialized to undefined
for (var 1 = 0; i < arguments.length; i++) {

X += arguments[i];
y A
console.log(x) ; — undefined + sOome
} number yields NaN
£(1,2,3);

3 6 Nothing

-4

Automated Testing

= Manual testing
0 Important but limited by human time
s Automated testing

o Test execution: Regularly execute regression
test suite

0 Test creation: Automatic test generation

- 1

Automated Testing

= Manual testing
0 Important but limited by human time
s Automated testing

o Test execution: Regularly execute regression
test suite

ol Test creation: Automatic test generation

Focus of this lecture

Kinds of Approaches

s Blackbox

o No analysis of program
= Greybox

o Lightweight analysis of program

o E.g., coverage achieved by inputs
s Whitebox
o More heavyweight analysis of program

o E.g., conditions that trigger specific paths

- 1

Kinds of Approaches

s Blackbox This
o No analysis of program lecture

= Greybox

o Lightweight analysis of program

o E.g., coverage achieved by inputs
s Whitebox

o More heavyweight analysis of program

o E.g., conditions that trigger specific paths

Kinds of Approaches

s Blackbox

o No analysis of program
= Greybox

o Lightweight analysis of program Next
o E.g., coverage achieved by inputs |lecture

s Whitebox

o More heavyweight analysis of program

o E.g., conditions that trigger specific paths

Kinds of Approaches

= Blackbox All of them:
5 No analysis of program Use feedback
= Greybox from test
executions

o Lightweight analysis of program

o E.g., coverage achieved by inputs
s Whitebox
o More heavyweight analysis of program

o E.g., conditions that trigger specific paths

What’s “the Program™?

= Many possible answers
0 Individual function
0 Class and its methods
0 Entire library
o Entire stand-alone tool

= Ideas discussed here work (in
principle) on multiple levels

Outline

= Introduction
= Randoop <=——

o Based on Feedback-Directed Random Test
Generation, Pacheco et al., ICSE 2007
= Greybox fuzzing in AFL

0 Based on

https://Icamtuf.coredump.cx/afl/technical_details.txt

Motivating Examples

Two randomly generated tests:

Set s = new HashSet() ;
s.add("hi") ;
assertTrue(s.equals(s));

Set s = new HashSet() ;
s.add("hi") ;

s.isEmpty() ;
assertTrue(s.equals(s));

- 1

Motivating Examples

Two randomly generated tests:

Set s = new HashSet() ;
s.add("hi") ;
assertTrue(s.equals(s));

Set s = new HashSet() ;

s.add("hi") ;

s.isEmpty(); |——— Only difference
assertTrue(s.equals(s));

Motivating Examples

Two randomly generated tests:

Set s = new HashSet() ;
s.add("hi") ;
assertTrue(s.equals(s));

Set s = new HashSet() ;

. dd "h'" ;
s-2dd("hi”) Redundant test

s.isEmpty() ;
assertTrue(s.equals(s));

Motivating Examples (2)

Three randomly generated tests:

Date d = new Date (2006, 2, 14);
assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);
d.setMonth(-1) ;
assertTrue(d.equals(d)) ;

Date d = new Date(2006, 2, 14);
d.setMonth(-1) ;

d.setDay(5) ;
assertTrue(d.equals(d)) ;

- 1

Motivating Examples (2)

Three randomly generated tests:

Date d = new Date (2006, 2, 14);
assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);
d.setMonth(-1) ;

rtT d.equals(d)); — .
asserviruel S() Violates
Date d = new Date(2006, 2, 14); Pl‘e-COI‘Idition
d.setMonth(-1) ;
d.setDay(5) ;

assertTrue(d.equals(d)) ;

Motivating Examples (2)

Three randomly generated tests:

Date d = new Date (2006, 2, 14);
assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);
d.setMonth(-1) ;
assertTrue(d.equals(d)) ;

lllegal tests
Date d = new Date (2006, 2, 14);

d.setMonth(-1) ;
d.setDay(5) ;
assertTrue(d.equals(d)) ;

Feedback-directed Test Generation

Idea: Guide randomized creation of new
test inputs by feedback about execution
of previous inputs

= Avoid redundant inputs
= Avoid illegal inputs

m Test input here means sequence of method calls

m Software under test: Classes in Java-like
language

Approach

= Build test inputs incrementally
0 New test inputs extend previous ones

= As soon as test input is created,
execute it

= Use execution results to guide

generation
o away from redundant or illegal method
sequences
0 toward sequences that create new object
states 10

Randoop: Input/Output

Randoop: Implementation of feedback-
directed random test generation

m Input:
n Classes under test
o Time limit
0 Set of contracts
. Method contracts, e.g., o.hashCode ()
throws no exception
. Object invariants, e.qg.,

O.equals (o) == true

m Output: Test cases with assertions

11

Example

HashMap h = new HashMap() ;

Collection ¢ = h.values();

Object[] a = c.toArray();

LinkedList 1 = new LinkedList();
1l.addFirst(a);

TreeSet t = new TreeSet (1) ;

Set u = Collections.unmodifiableSet (t) ;
assertTrue (u.equals(u)) ;

12 - 1

Example

HashMap h = new HashMap() ;

Collection ¢ = h.values();

Object[] a = c.toArray();

LinkedList 1 = new LinkedList();
1l.addFirst(a);

TreeSet t = new TreeSet (1) ;

Set u = Collections.unmodifiableSet (t) ;

assertTrue(u.equals(u));

[Fails when executed

12 -

Example

HashMap h = new HashMap() ;
Collection ¢ = h.values();
Object[] a = c.toArray();
LinkedList 1 = new LinkedList();
1l.addFirst(a);

TreeSet t = new TreeSet (1) ;

Set u = Collections.unmodifiableSet (t) ;

assertTrue(u.equals(u));

[Fails when executed

No contracts
violated up
to last
method call

12 -

Algorithm

1. Initialize seed components: i=0; b=false;

2. Do until time limit expires:
m Create a new sequence

o Randomly pick a method To.m (T, ..., Tk)/Tret

0 For each T3, randomly pick a sequence S; from the
components that constructs a value v; of type T;

0 Create new sequence
Snew = 515 .04 Sk Tret Unew = Mm(v1, ..., Vg);

0 If Snhew Was previously created (lexically), go to-

m Classify the sequence S,,cw
0 May discard, output as test case, or add to
components

Classifying a Sequence

execute and .
start ——| check contract minimize
' ? n
contracts violated sequence
no sequence
components < . d(ljn dant? cqntrgct—
' violating
test case
discard
sequence

Image source: Slides by Pacheco et al.

14

Redundant Sequences

m During generation, maintain a set of all objects
created

m Sequence is redundant if all objects created
during its execution are in the above set (using
equals () to compare)

m Could also use more sophisticated state

equivalence methods
o0 E.g., heap canonicalization

15

Classxs nder Frots

4) ?id@ Qa Mf,“aod

e -

BMW N

N\ e/ H‘\s(’\ n (f L)

— /\/O vodume s VPLLA'LA

- /\/%w gCg\,\,\,Q\Ac,L

.7.) Class (?

-I-'\&\&l/\ﬂap w = v “Hmsln nﬂp (,)

— Vo cowhect 9 lnted

— NM/ W’eOL‘A,V\aLt\\,‘.‘-

= Ado o

C/eQ’V\AP own ew‘*g

72

3) ?\GLQ MQ‘HA“O‘ I Hd&l/\haf ()

= Sepmne Hml”n“[’ mi = A Hasl,\an’ [B

LQ QLMS“W% sey~ni
— No Cow ook vhoolah d

> R\LG(MV\O{°V\+

:) \\bﬁsLo\ro()tﬂr\"‘“" it

73

Pide wethod sk Flae s vabaes ()

— Nko\ scp[who» “"\'\«"" w»\s"v\ac/"s o vade

agr ﬁ\i Hash Na,

— W su;twtuq /g&w 5\1(, 2)

= Hath Na (3
- Qc-uv\'t y.a"u.,..o& , ‘*%\An«f m = W &\ P

CMechon ¢ = w. valkes)
L&Qm;,pb jgﬁ(\,\)\,\\a .

5 No wondract vidlek ol

— Not woheadont

=) Add Cﬁwpwm‘\S

74

Test Oracles

= Testing only useful if there is an
oracle

= Randoop outputs two kinds of oracles

0 Oracle for contract-violating test cases:

assertTrue (u.equals(u)) ;

1 QOracle for normal-behavior test cases:

assertEquals (2, l.size());
assertEquals(false, 1l.isEmpty());

17

Quiz

Which of these tests may be created by
Randoop?

Test 1: 1.2dd(23) ;

Linkedlist 1 = new LinkedList()
Test 2: 1.qget (=5) ;

LinkedlList 1 = new LinkedList()
Test 3: 1.add(7);

assertEquals(l.getFirst(), 7);

Linkedlist 1 = new LinkedList()

- 1

Quiz

Which of these tests may be created by
Randoop?

LinkedList 1 = new LinkedList()
1.add(23); (oracle missing)

Test 1:

LinkedList 1 = new LinkedList()
l.get (-5); (crashes)

Test 2:

LinkedList 1 = new LinkedList()

Test 3: 1.add(7);
assertEquals(l.getFirst(), 7);

18 -

Results

m Applied to data structure implementations and
popular library classes

m Achieves 80-100% basic block coverage

m Finds various bugs in JDK collections, classes
from the .NET framework, and Apache libraries

Read Pacheco et al.s paper for details

19

Outline

= Introduction
= Randoop

o Based on Feedback-Directed Random Test
Generation, Pacheco et al., ICSE 2007
= Greybox fuzzing in AFL <«——

0 Based on

https://Icamtuf.coredump.cx/afl/technical_details.txt

20

Greybox Fuzzing

= Guide input generation toward a goal

0 Guidance based on lightweight program
analysis
= Three main steps
o Randomly generate inputs

0 Get feedback from test executions:

What code is covered?

o Mutate inputs that have covered new code

21

American Fuzzy Lop

22 -

y

American Fuzzy Lop

22 -

American Fuzzy Lop

= Simple yet effective fuzzing tool

0 Targets C/C++ programs

0 Inputs are, e.g., files read by the program
= Widely used in industry

o In particular, to find security-related bugs

0 E.g., in OpenSSL, PHP, Firefox

22 -

75

O\/Qf\/\{w (}(\/ A?L

No
\S ',VC"("(&"\'\. ? Hb\)quox

’t § T/\VC\\O\?LQ . Nt\) t " S —_ a
Qb\rvx"\' ’
’I) Mes
OAOuSC M%rF NZ
T E‘«tj{mcwﬁ

Measuring Coverage

= Different coverage metrics

o Line/statement/branch/path coverage
= Here: Branch coverage

1 Branches between basic blocks

o Rationale: Reaching a code location not
enough to trigger a bug, but state also matters

1 Compromise between
» Effort spent on measuring coverage

« Guidance it provides to the fuzzer

24

l;xew“ru

EK € (‘A«,a\:\’\,

&

76

Efficient Implementation

= Instrumentation added at branching
points:
cur location = /+COMPILE TIME RANDOMx/;

shared mem[cur location ~ prev location]++;

prev_location = cur location >> 1;

26 -

1

Efficient Implementation

= Instrumentation added at branching
points:
cur_location = /*COMPILE TIME RANDCMx/;

shared mem[cur location ~ prev location]++;

prev_location = cur location >> 1;

Advantage:
Works well with
separate compilation

26 -

Efficient Implementation

= Instrumentation added at branching
points:

cur location = /+COMPILE TIME RANDOM*/;
shared mem[cur location ~ prev location]++;

prev_location = cur location >> 1;

Globally reachable memory
location that stores how often
each edge was covered

26 -

Efficient Implementation

= Instrumentation added at branching
points:
cur location = /+COMPILE TIME RANDOMx/;

shared mem[cur location ~ prev location]++;

prev_location = cur location >> 1;

Combine previous and current
block into a fixed-size hash

26 -

Efficient Implementation

= Instrumentation added at branching
points:
cur location = /+COMPILE TIME RANDOMx/;

shared mem[cur location ~ prev location]++;

prev_location = cur location >> 1;

Shift to distinguish between “A” followed
by “B” from “B” followed by “A”

26 -

Detecting New Behaviors

= Inputs that trigger a new edge In the
CFG: Considered as new behavior

= Alternative: Consider new paths

o More expensive to track

1 Path explosion problem

27

E?(Wnu\.

E;(rtc. 4 s

Eaac,. (=

Cxee - 30

A—> R - C- D> = E

A-s B » Co) A> E

A> R>¢s AR~ (> AR ~C>D " E

not weo

77

Edge Hit Counts

= Refinement of the previous definition
of “new behaviors™

s For each edge, count how often it is
taken

0 Approximate counts based on buckets of

Increasing size
. 1,2,3,4-7,8-15, 16-31, efc.

1 Rationale: Focus on relevant differences in the

hit counts 29

Evolving the Input Queue

= Maintain queue of inputs
o Initially: Seed inputs provided by user
0 Once used, keep input if it covers new edges
o Add new inputs by mutating existing input

= In practice: Queue sizes of 1k to 10k

30

Mutation Operators

= Goal: Create new inputs from existing
inputs
= Random transformations of bytes In
an existing input
0 Bit flips with varying lengths and stepovers
o Addition and subtraction of small integers
o Insertion of known interesting integers
« E.g.,0,1, INT_MAX
0 Splicing of different inputs

31

More Tricks for Fast Fuzzing

= Time and memory limits
0 Discard input when execution is too expensive
= Pruning the queue

o Periodically select subset of inputs that still
cover every edge seen so far

= Prioritize how many mutants to
generate from an input in the queue

o E.g., focus on unusual paths or try to reach
specific locations

32

Real-World Impact

= Open-source tool maintained mostly
by Google
o Initially created by single developer

o Various improvements proposed in academia
and industry

s Fuzzers regularly check various
security-criticial components

o Many thousands of compute hours

0 Hundreds of detected vulnerabilities

33

