
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Random Testing and Fuzzing



2 - 1

Warm-up Quiz

function f(a,b) {
var x;
for (var i = 0; i < arguments.length; i++) {
x += arguments[i];

}
console.log(x);

}
f(1,2,3);

What does this JavaScript code print?

Nothing6 NaN3



2 - 2

Warm-up Quiz

function f(a,b) {
var x;
for (var i = 0; i < arguments.length; i++) {
x += arguments[i];

}
console.log(x);

}
f(1,2,3);

What does this JavaScript code print?

Nothing6 NaN3



2 - 3

Warm-up Quiz

function f(a,b) {
var x;
for (var i = 0; i < arguments.length; i++) {
x += arguments[i];

}
console.log(x);

}
f(1,2,3);

What does this JavaScript code print?

Nothing6 NaN3

Array-like object
that contains all
three arguments



2 - 4

Warm-up Quiz

function f(a,b) {
var x;
for (var i = 0; i < arguments.length; i++) {
x += arguments[i];

}
console.log(x);

}
f(1,2,3);

What does this JavaScript code print?

Nothing6 NaN3

Initialized to undefined

undefined + some
number yields NaN



3 - 1

Automated Testing

■ Manual testing

□ Important but limited by human time

■ Automated testing

□ Test execution: Regularly execute regression

test suite

□ Test creation: Automatic test generation



3 - 2

Automated Testing

■ Manual testing

□ Important but limited by human time

■ Automated testing

□ Test execution: Regularly execute regression

test suite

□ Test creation: Automatic test generation
Focus of this lecture



4 - 1

Kinds of Approaches

■ Blackbox
□ No analysis of program

■ Greybox

□ Lightweight analysis of program

□ E.g., coverage achieved by inputs

■ Whitebox

□ More heavyweight analysis of program

□ E.g., conditions that trigger specific paths



4 - 2

Kinds of Approaches

■ Blackbox
□ No analysis of program

■ Greybox

□ Lightweight analysis of program

□ E.g., coverage achieved by inputs

■ Whitebox

□ More heavyweight analysis of program

□ E.g., conditions that trigger specific paths

This
lecture



4 - 3

Kinds of Approaches

■ Blackbox
□ No analysis of program

■ Greybox

□ Lightweight analysis of program

□ E.g., coverage achieved by inputs

■ Whitebox

□ More heavyweight analysis of program

□ E.g., conditions that trigger specific paths

Next
lecture



4 - 4

Kinds of Approaches

■ Blackbox
□ No analysis of program

■ Greybox

□ Lightweight analysis of program

□ E.g., coverage achieved by inputs

■ Whitebox

□ More heavyweight analysis of program

□ E.g., conditions that trigger specific paths

All of them:
Use feedback
from test
executions



5

What’s “the Program”?

■ Many possible answers

□ Individual function

□ Class and its methods

□ Entire library

□ Entire stand-alone tool

■ Ideas discussed here work (in
principle) on multiple levels



6

Outline

■ Introduction

■ Randoop

□ Based on Feedback-Directed Random Test

Generation, Pacheco et al., ICSE 2007

■ Greybox fuzzing in AFL
□ Based on

https://lcamtuf.coredump.cx/afl/technical details.txt



7 - 1

Motivating Examples

Set s = new HashSet();

s.add("hi");

assertTrue(s.equals(s));

Set s = new HashSet();

s.add("hi");

s.isEmpty();

assertTrue(s.equals(s));

Two randomly generated tests:



7 - 2

Motivating Examples

Set s = new HashSet();

s.add("hi");

assertTrue(s.equals(s));

Set s = new HashSet();

s.add("hi");

s.isEmpty();

assertTrue(s.equals(s));

Two randomly generated tests:

Only difference



7 - 3

Motivating Examples

Set s = new HashSet();

s.add("hi");

assertTrue(s.equals(s));

Set s = new HashSet();

s.add("hi");

s.isEmpty();

assertTrue(s.equals(s));

Two randomly generated tests:

Redundant test



8 - 1

Motivating Examples (2)

Date d = new Date(2006, 2, 14);

assertTrue(d.equals(d));

Three randomly generated tests:

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

d.setDay(5);

assertTrue(d.equals(d));



8 - 2

Motivating Examples (2)

Date d = new Date(2006, 2, 14);

assertTrue(d.equals(d));

Three randomly generated tests:

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

d.setDay(5);

assertTrue(d.equals(d));

Violates
pre-condition



8 - 3

Motivating Examples (2)

Date d = new Date(2006, 2, 14);

assertTrue(d.equals(d));

Three randomly generated tests:

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

assertTrue(d.equals(d));

Date d = new Date(2006, 2, 14);

d.setMonth(-1);

d.setDay(5);

assertTrue(d.equals(d));

Illegal tests



9

Feedback-directed Test Generation

Idea: Guide randomized creation of new
test inputs by feedback about execution
of previous inputs

■ Avoid redundant inputs

■ Avoid illegal inputs

■ Test input here means sequence of method calls

■ Software under test: Classes in Java-like
language



10

Approach

■ Build test inputs incrementally
□ New test inputs extend previous ones

■ As soon as test input is created,
execute it

■ Use execution results to guide
generation
□ away from redundant or illegal method

sequences
□ toward sequences that create new object

states



11

Randoop: Input/Output

Randoop: Implementation of feedback-
directed random test generation
■ Input:

□ Classes under test
□ Time limit
□ Set of contracts

• Method contracts, e.g., o.hashCode()
throws no exception

• Object invariants, e.g.,
o.equals(o) == true

■ Output: Test cases with assertions



12 - 1

Example

HashMap h = new HashMap();

Collection c = h.values();

Object[] a = c.toArray();

LinkedList l = new LinkedList();

l.addFirst(a);

TreeSet t = new TreeSet(l);

Set u = Collections.unmodifiableSet(t);

assertTrue(u.equals(u));



12 - 2

Example

HashMap h = new HashMap();

Collection c = h.values();

Object[] a = c.toArray();

LinkedList l = new LinkedList();

l.addFirst(a);

TreeSet t = new TreeSet(l);

Set u = Collections.unmodifiableSet(t);

assertTrue(u.equals(u));

Fails when executed



12 - 3

Example

HashMap h = new HashMap();

Collection c = h.values();

Object[] a = c.toArray();

LinkedList l = new LinkedList();

l.addFirst(a);

TreeSet t = new TreeSet(l);

Set u = Collections.unmodifiableSet(t);

assertTrue(u.equals(u));

Fails when executed

No contracts
violated up
to last
method call



13

Algorithm

1. Initialize seed components: i=0; b=false; ...

2. Do until time limit expires:
■ Create a new sequence

□ Randomly pick a method T0.m(T1, ..., Tk)/Tret

□ For each Ti, randomly pick a sequence Si from the
components that constructs a value vi of type Ti

□ Create new sequence
Snew = S1; ...;Sk;Tret vnew = m(v1, ..., vk);

□ If Snew was previously created (lexically), go to

■ Classify the sequence Snew

□ May discard, output as test case, or add to
components



14

Classifying a Sequence

Image source: Slides by Pacheco et al.



15

Redundant Sequences

■ During generation, maintain a set of all objects
created

■ Sequence is redundant if all objects created
during its execution are in the above set (using
equals() to compare)

■ Could also use more sophisticated state
equivalence methods
□ E.g., heap canonicalization



72



73



74



17

Test Oracles

■ Testing only useful if there is an
oracle

■ Randoop outputs two kinds of oracles

□ Oracle for contract-violating test cases:

assertTrue(u.equals(u));

□ Oracle for normal-behavior test cases:

assertEquals(2, l.size());

assertEquals(false, l.isEmpty());



18 - 1

Quiz

Which of these tests may be created by
Randoop?

LinkedList l = new LinkedList();

l.add(23);

LinkedList l = new LinkedList();

l.get(-5);

LinkedList l = new LinkedList();

l.add(7);

assertEquals(l.getFirst(), 7);

Test 1:

Test 2:

Test 3:



18 - 2

Quiz

Which of these tests may be created by
Randoop?

LinkedList l = new LinkedList();

l.add(23);

LinkedList l = new LinkedList();

l.get(-5);

LinkedList l = new LinkedList();

l.add(7);

assertEquals(l.getFirst(), 7);

Test 1:

Test 2:

Test 3:

(oracle missing)

(crashes)



19

Results

■ Applied to data structure implementations and
popular library classes

■ Achieves 80-100% basic block coverage

■ Finds various bugs in JDK collections, classes
from the .NET framework, and Apache libraries

Read Pacheco et al.’s paper for details



20

Outline

■ Introduction

■ Randoop

□ Based on Feedback-Directed Random Test

Generation, Pacheco et al., ICSE 2007

■ Greybox fuzzing in AFL
□ Based on

https://lcamtuf.coredump.cx/afl/technical details.txt



21

Greybox Fuzzing

■ Guide input generation toward a goal

□ Guidance based on lightweight program

analysis

■ Three main steps

□ Randomly generate inputs

□ Get feedback from test executions:

What code is covered?

□ Mutate inputs that have covered new code



22 - 1

American Fuzzy Lop



22 - 2

American Fuzzy Lop



22 - 3

American Fuzzy Lop

■ Simple yet effective fuzzing tool

□ Targets C/C++ programs

□ Inputs are, e.g., files read by the program

■ Widely used in industry

□ In particular, to find security-related bugs

□ E.g., in OpenSSL, PHP, Firefox



75



24

Measuring Coverage

■ Different coverage metrics
□ Line/statement/branch/path coverage

■ Here: Branch coverage
□ Branches between basic blocks

□ Rationale: Reaching a code location not

enough to trigger a bug, but state also matters

□ Compromise between

• Effort spent on measuring coverage

• Guidance it provides to the fuzzer



76



26 - 1

Efficient Implementation

■ Instrumentation added at branching
points:

cur_location = /*COMPILE_TIME_RANDOM*/;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;



26 - 2

Efficient Implementation

■ Instrumentation added at branching
points:

cur_location = /*COMPILE_TIME_RANDOM*/;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;

Advantage:
Works well with
separate compilation



26 - 3

Efficient Implementation

■ Instrumentation added at branching
points:

cur_location = /*COMPILE_TIME_RANDOM*/;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;

Globally reachable memory
location that stores how often
each edge was covered



26 - 4

Efficient Implementation

■ Instrumentation added at branching
points:

cur_location = /*COMPILE_TIME_RANDOM*/;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;

Combine previous and current
block into a fixed-size hash



26 - 5

Efficient Implementation

■ Instrumentation added at branching
points:

cur_location = /*COMPILE_TIME_RANDOM*/;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;

Shift to distinguish between “A” followed
by “B” from “B” followed by “A”



27

Detecting New Behaviors

■ Inputs that trigger a new edge in the
CFG: Considered as new behavior

■ Alternative: Consider new paths

□ More expensive to track

□ Path explosion problem



77



29

Edge Hit Counts

■ Refinement of the previous definition
of “new behaviors”

■ For each edge, count how often it is
taken

□ Approximate counts based on buckets of

increasing size

• 1, 2, 3, 4-7, 8-15, 16-31, etc.

□ Rationale: Focus on relevant differences in the

hit counts



30

Evolving the Input Queue

■ Maintain queue of inputs

□ Initially: Seed inputs provided by user

□ Once used, keep input if it covers new edges

□ Add new inputs by mutating existing input

■ In practice: Queue sizes of 1k to 10k



31

Mutation Operators

■ Goal: Create new inputs from existing
inputs

■ Random transformations of bytes in
an existing input
□ Bit flips with varying lengths and stepovers

□ Addition and subtraction of small integers

□ Insertion of known interesting integers

• E.g., 0, 1, INT MAX

□ Splicing of different inputs



32

More Tricks for Fast Fuzzing

■ Time and memory limits
□ Discard input when execution is too expensive

■ Pruning the queue
□ Periodically select subset of inputs that still

cover every edge seen so far

■ Prioritize how many mutants to
generate from an input in the queue
□ E.g., focus on unusual paths or try to reach

specific locations



33

Real-World Impact

■ Open-source tool maintained mostly
by Google
□ Initially created by single developer

□ Various improvements proposed in academia

and industry

■ Fuzzers regularly check various
security-criticial components
□ Many thousands of compute hours

□ Hundreds of detected vulnerabilities


