
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Introduction of Course Project

2

Goal

Design and implement dynamic slicing
■ Input:

□ Executable program with all inputs

□ Slicing criterion

■ Output:

□ Reduced program that yields same behavior w.r.t.

slicing criterion (for same input)

3 - 1

Example

def slice_me(n):
x = n + 1;
if x == 5:
print("hey")

else:
print("ho")

print("brrr")

slice_me(5)

3 - 2

Example

def slice_me(n):
x = n + 1;
if x == 5:
print("hey")

else:
print("ho")

print("brrr")

slice_me(5) Slicing
criterion

3 - 3

Example

def slice_me(n):
x = n + 1;
if x == 5:
print("hey")

else:
print("ho")

print("brrr")

slice_me(5) Slicing
criterion

def sliceMe(n):
x = n + 1
if x == 5:
pass

else:
print("ho")

slice_me(5)

3 - 4

Example

def slice_me(n):
x = n + 1;
if x == 5:
print("hey")

else:
print("ho")

print("brrr")

slice_me(5)

Slicing
criterion

3 - 5

Example

def slice_me(n):
x = n + 1;
if x == 5:
print("hey")

else:
print("ho")

print("brrr")

slice_me(5)

Slicing
criterion

def slice_me(n):
print("brrr")

slice_me(5)

4

Slicing Algorithms

Different algorithms differ in

■ Precision: How small does the slice get?

■ Efficiency: How long does the slicing take?

■ Conceptual complexity

Objective: Smallest possible slice (i.e.,
as precise as possible), but still sound

■ Soundness: All statements included to preserve

behavior w.r.t. slicing criterion

5

Assumptions

Kind of programs to consider

■ Single function

■ Single file: Defines the function and then calls it

■ Slice should always keep all arguments to the

sliced function (even if unused)

■ No definitions of classes or other functions in the

sliced function

6

Assumptions (2)

Subset of Python to consider

■ Language features until Python 3.10

■ No calls to eval or exec

■ No with statements

■ Left-hand side of assignments: Single variable,

attribute, or index access

7

Assumptions (3)

Intra-procedural analysis

■ Analysis considers only one function

■ Calls to other functions are possible:

□ Callee code not analyzed

□ Assume data flows:

• From arguments to return value

• From base object to return value

• From arguments to base object

53

9

Dynamic Analysis

■ Based on DynaPyt framework

■ Hooks/callbacks for different kinds of
runtime events, e.g.,

□ variable reads/writes

□ binary expressions

□ conditionals

■ Based on source-to-source
instrumentation

10

DynaPyt Demo

[simple Python code, single-hook
analysis, instrumented code, output of
running the analysis on the code]

11

Tips on DynaPyt

■ Rich framework that provides more
than what you need

■ Work through the tutorial to
understand the basics

■ Check out example analyses under
src/dynapyt/analyses

12

Implementing Slicing

■ Track data-flow and control-flow
dependencies at runtime
□ Data flow: Whenever a new value gets

computed, track dependency from inputs

□ Control flow: Whenever a control flow decision

is made, track what it depends on

13

Location Information

■ Every runtime event happens at some
code location

■ IID = unique identifier of location in
original program (i.e., before
instrumentation)

■ Use it to determine which code is
needed in the slice

14

Example: IIDs

[demo of IIDs; how to obtain, how to
resolve, what they contain (line, column)]

15

AST-based Pruning of Code

■ Once locations to keep are known:

□ Prune away remaining code

■ Implement it via AST transformation

□ Parse

□ Manipulate

□ Pretty-print

16

Demo

[show code in syntax tree manipulation,
run if trom Python console on a simple
example]
[show printed ast]

17

Project Milestones

■ Milestone 1

□ Simple DynaPyt analysis

□ AST manipulation

■ Milestone 2
□ Slicing w.r.t. data-flow only

■ Milestone 3

□ Slicing w.r.t. control-flow and data-flow

18 - 1

Milestone 1: Simple DynaPyt Analysis

■ Goal: Prints values of variable writes

□ Actual goal: Get familiar with DynaPyt

■ Example:

y = 0
x = 23
if x > 5:
y = x - 3

print(y)

18 - 2

Milestone 1: Simple DynaPyt Analysis

■ Goal: Prints values of variable writes

□ Actual goal: Get familiar with DynaPyt

■ Example:

y = 0
x = 23
if x > 5:
y = x - 3

print(y)

0
23
20

19 - 1

Milestone 1: AST Manipulation

■ Input: Code, line numbers

■ Output: Subset of code

■ Example:

lines to keep: 2, 3, 5
print("hello")
y = 0
x = 23
if x > 5:
y = x - 3

print(y)

19 - 2

Milestone 1: AST Manipulation

■ Input: Code, line numbers

■ Output: Subset of code

■ Example:

lines to keep: 2, 3, 5
print("hello")
y = 0
x = 23
if x > 5:
y = x - 3

print(y)

y = 0
x = 23
y = x - 3

21 - 1

Milestone 2

■ Slicing based on data flow only

■ Assume: Straightline code without
control flow

■ Example:

x = 0
y = 0
x = 23
z = 5
y = x - 3
z = x + 1
z = y * 3

21 - 2

Milestone 2

■ Slicing based on data flow only

■ Assume: Straightline code without
control flow

■ Example:

x = 0
y = 0
x = 23
z = 5
y = x - 3
z = x + 1
z = y * 3 Slicing

criterion

21 - 3

Milestone 2

■ Slicing based on data flow only

■ Assume: Straightline code without
control flow

■ Example:

x = 0
y = 0
x = 23
z = 5
y = x - 3
z = x + 1
z = y * 3 Slicing

criterion

y = 0
x = 23
y = x - 3

22 - 1

Milestone 3

■ Slicing based on both data flow and
control flow

■ Now, code may have branches,
loops, etc.

■ Example:
x = 3
if x > -2:
print("hello")

print("bye")

22 - 2

Milestone 3

■ Slicing based on both data flow and
control flow

■ Now, code may have branches,
loops, etc.

■ Example:
x = 3
if x > -2:
print("hello")

print("bye") Slicing
criterion

22 - 3

Milestone 3

■ Slicing based on both data flow and
control flow

■ Now, code may have branches,
loops, etc.

■ Example:
x = 3
if x > -2:
print("hello")

print("bye") Slicing
criterion

x = 3
if x > -2:
print("hello")

23

Scripts and Tests

Provided by us:
■ To-be-implemented scripts, e.g.,

slice.py

■ Test suite of programs to slice

□ Run with pytest

Expected from you:
■ Don’t rename any files

■ Add more tests

25

Mentoring

■ Each student gets a mentor

■ Meet at least three times (once per
milestone)

■ Mentor assignment and meeting
dates: Message in Ilias

26 - 1

Timeline

■ Milestone 1: Due in week of Nov 20–24

■ Milestone 2: Due in week of Dec 11-15

■ Milestone 3: Due in week of Jan 15–19

■ Full project due: Feb 1

□ Project report (up to 4 pages)

□ Your implementation

■ Oral presentation: Week of Feb 5–9

26 - 2

Timeline

■ Milestone 1: Due in week of Nov 20–24

■ Milestone 2: Due in week of Dec 11-15

■ Milestone 3: Due in week of Jan 15–19

■ Full project due: Feb 1

□ Project report (up to 4 pages)

□ Your implementation

■ Oral presentation: Week of Feb 5–9

Soft
deadlines

26 - 3

Timeline

■ Milestone 1: Due in week of Nov 20–24

■ Milestone 2: Due in week of Dec 11-15

■ Milestone 3: Due in week of Jan 15–19

■ Full project due: Feb 1

□ Project report (up to 4 pages)

□ Your implementation

■ Oral presentation: Week of Feb 5–9

Hard
deadlines

