
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Path Profiling



2

Talks You May Find Interesting

Jan 23,
9am,
2.013

Copilot Workspace - From Issue Description to
Pull Request with AI Assistance All The Way.
Dr. Tamas Szabo (GitHub)

Jan 29,
3:45pm,
0.108

How Is The Sausage Made? A Whirlwind Tour
of V8, Real-World JIT-Compilers, and Their Trade-
Offs. Dr. Daniel Lehmann (Google)

Feb 1,
10am,
2.013

Code Search and Comprehension. Prof. Dr.
Kathryn T. Stolee (North Carolina State University)

Feb 1,
11am,
2.013

Software Supply Chains: Open Research Topics.
Prof. Dr. Georgios Gousios (TU Delft and Endor
Labs)



3 - 1

Warm-up Quiz

def f(x):
if x == 3:

return ["hi"]
else:

for i in range(x):
yield i

print(list(f(3)))

What does this Python code print?

Nothing [] ["hi"] [0, 1, 2]



3 - 2

Warm-up Quiz

def f(x):
if x == 3:

return ["hi"]
else:

for i in range(x):
yield i

print(list(f(3)))

What does this Python code print?

Nothing [] ["hi"] [0, 1, 2]



3 - 3

Warm-up Quiz

def f(x):
if x == 3:

return ["hi"]
else:

for i in range(x):
yield i

print(list(f(3)))

What does this Python code print?

Nothing [] ["hi"] [0, 1, 2]

yield turns the
function into a
generator



3 - 4

Warm-up Quiz

def f(x):
if x == 3:

return ["hi"]
else:

for i in range(x):
yield i

print(list(f(3)))

What does this Python code print?

Nothing [] ["hi"] [0, 1, 2]

yield turns the
function into a
generator

Returning from a
generator raises
StopIteration("hi")



4

Outline

1. Motivation and Challenges

2. Ball-Larus Algorithm for DAGs

3. Generalization and Applications

Mostly based on this paper:

■ Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:

■ Whole program paths , Larus, PLDI 1999

■ HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009



5

Path Profiling

■ Goal: Count how often a path through a
function is executed

■ Interesting for various applications
□ Profile-directed compiler optimizations

□ Performance tuning: Which paths are worth
optimizing?

□ Test coverage: Which paths are not yet tested?



6

Challenges

■ Runtime overhead
□ Limit slowdown of program

■ Accuracy
□ Ideally: Precise profiles (no heuristics, no

approximations)

■ Infinitely many paths
□ Cycles in control flow graph



107



8

Edge Profiling

Naive approach: Edge profiling

■ Instrument each branching point

■ Count how often each CFG edge is
executed

■ Estimate most frequent path: Always
follow most frequent edge



108



10 - 1

Edge Profiling

Naive approach: Edge profiling

■ Instrument each branching point

■ Count how often each CFG edge is
executed

■ Estimate most frequent path: Always
follow most frequent edge



10 - 2

Edge Profiling

Naive approach: Edge profiling

■ Instrument each branching point

■ Count how often each CFG edge is
executed

■ Estimate most frequent path: Always
follow most frequent edge

Fails to uniquely identify
most frequent path



11

Outline

1. Motivation and Challenges

2. Ball-Larus Algorithm for DAGs

3. Generalization and Applications

Mostly based on this paper:

■ Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:

■ Whole program paths , Larus, PLDI 1999

■ HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009



12

Ball-Larus Algorithm

■ Assign a number to each path

■ Compute path number by
incrementing a counter at branching
points

■ Properties of path encoding
□ Precise: A single unique encoding for each

path

□ Minimal: Instruments subset of edges with
minimal cost



109



14

Algorithm for DAGs

Assumptions

■ Control flow graph is a directed
acyclic graph (DAG)

■ n paths (numbered 0 to n− 1)

■ Graph has unique entry and exit
nodes

■ Artificial back edge from exit to entry



110



16

Algorithm: Overview

■ Step 1: Assign integers to edges
□ Goal: Sum along a path yields unique number

for path
□ Enough to achieve ”precise” goal

■ Step 2: Assign increment operations
to edges
□ Goal: Minimize additions along edges
□ Instrument subset of all edges
□ Assumes to know/estimate how frequent

edges are executed



17

Representing Paths with Sums

■ Associate with each node a value:
NumPaths(n) = number of paths from
n to exit

■ Computing NumPaths
□ Visit nodes in reverse topological order
□ If n is leaf node:

NumPaths(n) = 1

□ Else:
NumPaths(n) = sum of NumPaths of
destination of outgoing edges



111



19

Representing Paths with Sums (2)

For each node in reverse topological
order:

■ If n is leaf node:
NumPaths(n) = 1

■ Else:
□ NumPaths(n) = 0

□ For each edge n → m:
• V al(n → m) = NumPaths(n)

• NumPaths(n) += NumPaths(m)



112



22

Algorithm: Overview

■ Step 1: Assign integers to edges
□ Goal: Sum along a path yields unique number

for path
□ Enough to achieve ”precise” goal

■ Step 2: Assign increment operations
to edges
□ Goal: Minimize additions along edges
□ Instrument subset of all edges
□ Assumes to know/estimate how frequent

edges are executed



23

Spanning Tree

■ Given: Graph G

■ Spanning tree T :
Undirected subgraph of G that is a
tree and that contains all nodes of G

■ Chord edges: Edges in G but not in T



113



25

Increments for Edges

Goal: Increment sum at subset of edges

■ Choose spanning tree with maximum
edge cost
□ Cost of individual edges is assumed to be

known

■ Compute increments at the chords of
the spanning tree
□ Based on existing event counting algorithm



114



27

Instrumentation

■ Basic idea
□ Initialize sum at entry: r=0
□ Increment at edges: r+=..
□ At exit, increment counter for path:
count[r]++

■ Optimization
□ Initialize with incremented value, if first chord

edge on path: r=..
□ Increment sum and counter for path, if last

chord edge on path: count[r+..]++



28

Regenerating the Path

Knowing the sum r, how to determine the
path?
■ Use edge values from step 1 (”non-minimal

increments”)

■ Start at entry with R = r

■ At branches, use edge with largest value v that is
smaller than or equal to R and set R −= v



115



30

Outline

1. Motivation and Challenges

2. Ball-Larus algorithm for DAGs

3. Generalization and Applications

Mostly based on this paper:

■ Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:

■ Whole program paths , Larus, PLDI 1999

■ HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009



31

Generalizing to Cyclic CFGs

■ For each backedge n → m, add
dummy edges
□ Entry → m

□ n → Exit

■ Remove backedges and add
DAG-based increments

■ In addition, add instrumentation to
each backedge
□ count[r]++; r=0



32

Generalizing to Cyclic CFGs (2)

■ Leads to four kinds of paths

□ From entry to exit

□ From entry to backedge

□ From end of backedge to beginning of (possibly

another) backedge

□ From end of backedge to exit

■ Full path information can be
constructed from these four kinds



34

Applications

■ Performance optimization
□ Frequent path should get most attention by

optimizer

■ Statistical debugging
□ Paths correlated with failure are more likely to

contain the bug

■ Energy analysis
□ Warn developers about paths and statements

associated with high power consumption


