Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024
1

Talks You May Find Interesting

Jan 23,
9am,
2.013

Jan 29,
3:45pm,
0.108
Feb 1,

10am,
2.013

Feb 1,
11am,
2.013

Copilot Workspace - From Issue Description to
Pull Request with Al Assistance All The Way.
Dr. Tamas Szabo (GitHub)

How Is The Sausage Made? A Whirlwind Tour
of V8, Real-World JIT-Compilers, and Their Trade-
Offs. Dr. Daniel Lehmann (Google)

Code Search and Comprehension. Prof. Dr.
Kathryn T. Stolee (North Carolina State University)

Software Supply Chains: Open Research Topics.
Prof. Dr. Georgios Gousios (TU Delft and Endor
Labs)

Warm-up Quiz

What does this Python code print?

def f(x):
if x == 3:
return ["hi"]
else:
for i in range(x) :
yield 1

print (List (£(3)))

Nothing [] ["hi"] [0, 1, 2]

3 -1

Warm-up Quiz

What does this Python code print?

def f(x):
if x == 3:
return ["hi"]
else:
for i in range(x) :
yield 1

print (List (£(3)))

Nothing III ["hi"] [0, 1, 2]

3-2

Warm-up Quiz

What does this Python code print?

def f(x):
if x == 3:
return ["hi"]
else:
for 1 in range(x) :
yield 1
yield turns the
print (1ist(£(3))) function into a

generator

Nothing III ["hi"] [0, 1, 2]

Warm-up Quiz

What does this Python code print?

def f£(x) :

Returning from a
if x==3: & -
_ generator raises
return ["hi"]

StopIteration("hi")

else:
for 1 in range(x) :
yield 1
yield turns the
print (List (£(3))) function into a

generator

Nothing III ["hi"] [0, 1, 2]

Outline

1. Motivation and Challenges
2. Ball-Larus Algorithm for DAGs
3. Generalization and Applications

Mostly based on this paper:
m Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:
m Whole program paths , Larus, PLDI 1999

m HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009

Path Profiling

= Goal: Count how often a path through a
function is executed

= Interesting for various applications
o Profile-directed compiler optimizations

o Performance tuning: Which paths are worth
optimizing?
0 Test coverage: Which paths are not yet tested?

Challenges

= Runtime overhead

o Limit slowdown of program

= Accuracy

0 ldeally: Precise profiles (no heuristics, no
approximations)

s Infinitely many paths

0 Cycles in control flow graph

107

_fr\—cg[v-cv\cj

Edge Profiling

Naive approach: Edge profiling
= Instrument each branching point

= Count how often each CFG edge is
executed

s Estimate most frequent path: Always
follow most frequent edge

Exounpl: Edge %Jr'u\a
A 150
7120
/AOO
® > &

?;qvuvtb a& LX< L O

!
ﬂossr —Fﬂﬁ.wtv»“ {30*("*

ACDETF
— » Al e lile
?%Mb?] wu® OSQ'\BLO \‘D ‘Def{" S
Tt Pofl 1 FINp!
N
DT 30 (10)
ACDE T 60 4O
T 0
ARC DT)
ABCDE; (400 N 1900
O
ABDT 20
AgD€F\) 20

108

Edge Profiling

Naive approach: Edge profiling
= Instrument each branching point

= Count how often each CFG edge is
executed

s Estimate most frequent path: Always
follow most frequent edge

10 -

1

Edge Profiling

Naive approach: Edge profiling
= Instrument each branching point

= Count how often each CFG edge is
executed

= Estimate most frequent path: Always
follow most frequent edge

Fails to uniquely identify

most frequent path

10 -

Outline

1. Motivation and Challenges
2. Ball-Larus Algorithm for DAGS <«——
3. Generalization and Applications

Mostly based on this paper:
m Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:
m Whole program paths , Larus, PLDI 1999

m HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009

11

Ball-Larus Algorithm

= Assignh a number to each path

= Compute path number by
incrementing a counter at branching
points

= Properties of path encoding

0 Precise: A single unique encoding for each
path

o Minimal: Instruments subset of edges with
minimal cost

12

clade /counter
axtoy 0 couts ¢ ot
Ly nolees P@\“L(”
E‘dt/\ (:Mod(wd,
ACDT 0
ACHET 1
A% CDF N
ARCDET :
AR DT Yt
<

109

Algorithm for DAGs

Assumptions
= Control flow graph is a directed
acyclic graph (DAG)
= n paths (humbered 0 to n — 1)

= Graph has unique entry and exit
nodes

= Artificial back edge from exit to entry

14

110

Algorithm: Overview

= Step 1: Assign integers to edges

o Goal: Sum along a path yields unique number
for path
o Enough to achieve "precise” goal

s Step 2: Assign increment operations
to edges

o Goal: Minimize additions along edges
o Instrument subset of all edges
o Assumes to know/estimate how frequent

edges are executed -

Representing Paths with Sums

s Associate with each node a value:
NumPaths(n) = number of paths from
n to exit

s Computing NumPaths
o Visit nodes in reverse topological order
0 If n is leaf node:
NumPaths(n) =1
0 Else:
NumPaths(n) = sum of NumPaths of

destination of outgoing edges
17

£ x Q\MAPLL/ v Nuwa %@»‘H’\S

/\
\/

AN

111

Node /\/\L\M(PQJ((AS ("‘3
L= 1
E d
D 1+ = 2
C 2
? 242 =1
A '\ G+ 2 =6

Representing Paths with Sums (2)

For each node in reverse topological
order:

a If n is leaf node:
NumPaths(n) =1
s Else:

0 NumPaths(n) =0
o For each edge n — m:
. Val(n — m) = NumPaths(n)
« NumPaths(n) += NumPaths(m)

19

| Mo Padl s G)

T A
C A
D A
C -
B 2
A L

Tathy QwO@J&‘”\)

o ARDET: S

112

Algorithm: Overview

= Step 1: Assign integers to edges

o Goal: Sum along a path yields unique number
for path
o Enough to achieve "precise” goal

s Step 2: Assign increment operations
to edges

o Goal: Minimize additions along edges
o Instrument subset of all edges
o Assumes to know/estimate how frequent

edges are executed .

Spanning Tree

= Given: Graph ¢¢

= Spanning tree 7
Undirected subgraph of - that is a
tree and that contains all nodes of

= Chord edges: Edges in G but notin T

23

113

ﬁxﬁufph/ SW@”"W‘V‘ e

= A Spaumin
R @ww chg i JM@S&)
S s o Py
N N\ / N\

Increments for Edges

Goal: Increment sum at subset of edges

= Choose spanning tree with maximum
edge cost

o Cost of individual edges is assumed to be
Known

= Compute increments at the chords of
the spanning tree

0 Based on existing event counting algorithm

25

114

Instrumentation

s Basic idea

o Initialize sum at entry: r=0
0 Increment at edges: r+=. .
o At exit, increment counter for path:

count|[r]++

= Optimization
o Initialize with incremented value, if first chord
edge on path: r=..
o Increment sum and counter for path, if last
chord edge on path: count [r+..]++

27

Regenerating the Path

Knowing the sum r, how to determine the
path?
m Use edge values from step 1 ("non-minimal
increments”)
m Startatentry with R =r

m At branches, use edge with largest value v that is
smaller than or equal to R and set R —= v

28

Ex e\w,,\;.-. E;xwmk H ?o‘-"\"

A
3, -4
o C
/ o\) ABDF
%, > <
x / _ 4
N o
T - > ¥

=L O

R

I

A O

115

Outline

1. Motivation and Challenges
2. Ball-Larus algorithm for DAGs
3. Generalization and Applications <«——

Mostly based on this paper:
m Efficient path profiling, Ball and Larus, MICRO 1996

Other reading material:
m Whole program paths , Larus, PLDI 1999

m HOLMES: Effective statistical debugging via efficient path
profiling, Chilimbi et al., ICSE 2009

30

Generalizing to Cyclic CFGs

= For each backedge » — m, add
dummy edges

o Entry —m
0 n — Baxit

= Remove backedges and add
DAG-based increments

= In addition, add instrumentation to
each backedge

0 count[r]++; r=0

31

Generalizing to Cyclic CFGs (2)

= Leads to four kinds of paths
0 From entry to exit
o From entry to backedge

o From end of backedge to beginning of (possibly
another) backedge

o From end of backedge to exit

= Full path information can be
constructed from these four kinds

32

Applications

= Performance optimization
o Frequent path should get most attention by
optimizer
s Statistical debugging
o Paths correlated with failure are more likely to
contain the bug
s Energy analysis

o Warn developers about paths and statements
associated with high power consumption

34

