
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis:

Introduction and Basics



2

About Me: Michael Pradel

■ Since 9/2019: Full Professor
at University of Stuttgart

■ Before Stuttgart
□ Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
□ PhD at ETH Zurich, Switzerland
□ Postdoctoral researcher at UC Berkeley, USA
□ Assistant Professor at TU Darmstadt
□ Sabbatical at Facebook, Menlo Park, USA



3

About the Software Lab

■ My research group since 2014
■ Focus: Tools and techniques for

building reliable, efficient, and secure
software
□ Program testing and analysis
□ Machine learning, security

■ Thesis and job opportunities



4

Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Lectures, exercises, course project
□ Final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.



5

What is program analysis?



6

Program Testing & Analysis

What you probably know:

■ Manual testing or semi-automated
testing:
JUnit, Pytest, Selenium, etc.

■ Manual ”analysis” of programs:
Code inspection, debugging, etc.

Focus of this course:
Automated testing and program analysis



7 - 1

Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm



7 - 2

Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

0.5-25/KLoC
in delivered
software



7 - 3

Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

1.5 years to
find a bug
[Palix2011]



7 - 4

Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

Ariane 5 Northeast
blackout

Therac-25



8 - 1

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

ProgramInput Output



8 - 2

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input Output



8 - 3

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output



9 - 1

Static vs. Dynamic Analysis

Static Dynamic

■ Analyze source code,
byte code, or binary

■ Typically:
□ Consider all inputs
□ Overapproximate

possible behavior

■ Analyze program
execution

■ Typically:
□ Consider current

input
□ Underapproximate

possible behavior



9 - 2

Static vs. Dynamic Analysis

Static Dynamic

■ Analyze source code,
byte code, or binary

■ Typically:
□ Consider all inputs
□ Overapproximate

possible behavior

■ Analyze program
execution

■ Typically:
□ Consider current

input
□ Underapproximate

possible behavior

E.g., compilers,
lint-like tools

E.g., automated
testing, profilers



10 - 1

Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

What are the possible outputs?



10 - 2

Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Overapproximation: ”yes”, ”no”, ”maybe”
■ Consider all paths (that are feasible based on

limited knowledge)



10 - 3

Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Underapproximation: ”yes”
■ Execute the program once



10 - 4

Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Sound and complete: ”yes”, ”no”
■ For this example: Can explore both feasible paths



11 - 1

Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

What are the possible outputs?



11 - 2

Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Overapproximation: Any value
■ Consider all paths (that are feasible based on

limited knowledge about random())



11 - 3

Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Underapproximation:
Some number in [0,2), e.g., 1.234
■ Execute the program once



11 - 4

Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Sound and complete?
■ Exploring all possible outputs:

Practically impossible
■ This is the case for most real-world programs



1



13

Test Generation

■ Dynamic analysis:
Requires input to run the program

■ Test generation:
Creates inputs automatically

■ Examples
□ Generate JUnit tests:

Input = sequence of method calls
□ UI-level test generation:

Input = sequence UI events
□ Fuzz-test a compiler: Input = program



14

How Does All This Help Me?

■ Use program analysis tools
□ Improve the quality of your code

■ Understand program analysis
□ Better understanding of program behavior

■ Create your own tools



15

Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Lectures, exercises, course project
□ Final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.



16 - 1

Organization

■ Lectures

■ Exercises

■ Course project

■ Final exam



16 - 2

Organization

■ Lectures

■ Exercises

■ Course project

■ Final exam

Grading:

10%

40%

50%



17

Lectures

■ 15 lectures

■ Mondays (3:45pm) and
Tuesdays (11:30am)

□ Not all slots are used: Check the schedule



18

Exercises

■ 4 exercises

■ Pen and paper

■ Timeline

□ Published on day X

□ Submission due on X + 7 days

□ Discussion session soon afterwards

■ Individual work: No collaboration or
sharing of solutions



19

Course Project

■ Design, implement, and evaluate a
program analysis based on an existing
framework

□ Dynamic analaysis of Python code

□ Based on DynaPyt framework:
https://github.com/sola-st/DynaPyt

■ Individual, independent project



20

Mentoring

Each student has a mentor

■ First point of contact for all

project-related questions

■ Three 1:1 progress meetings

■ Email or schedule additional meetings when

needed

Beatriz
Souza

Aryaz
Eghbali



21 - 1

Course Project: Timeline

■ Published on November 6

■ Three progress meetings

■ Due on February 1

□ Implementation and results

□ Report

■ Presentation: February 5 to 9



21 - 2

Course Project: Timeline

■ Published on November 6

■ Three progress meetings

■ Due on February 1

□ Implementation and results

□ Report

■ Presentation: February 5 to 9

Grading:
(% of overall
grade)

10%

10%

10%

10%



22

Academic Integrity

■ Work you submit must be your own

■ Unauthorized group efforts and any
form of plagiarism are considered
academic dishonesty and will be
punished

■ Allowed to discuss the problem with
your peers, but not to reuse any part
of an existing solution



23

Final Exam

■ Content of lectures and reading
material

■ Written

■ One hour

■ Open-book
□ Tests your understanding, not your knowledge



24

Vertiefungsprüfung

Alternative to written exam:
Combined oral exam

■ A.k.a. “Vertiefungsprüfung”

■ Oral exam about content of two related courses

■ Specialization/“Vertiefungslinie”:

Software analysis

■ Rules for course project etc. are the same



25 - 1

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs



25 - 2

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Foundations



25 - 3

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Static
analysis



25 - 4

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Input
generation



25 - 5

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Dynamic
analysis



25 - 6

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Exercise 1

Exercise 4

Exercise 2

Exercise 3



25 - 7

Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Course
project



26

Learning Material

There is no script or single book that
covers everything

■ Slides and hand-written nodes:
Available after lecture

■ Pointers to papers, book chapters, and web
resources



27

Programming Language

Most concepts taught in this course:
Language-independent

Examples:
Various programming languages
■ JavaScript, Java, C++, Python, etc.

Course project: Python
■ Both target language and analysis language



28

Schedule

■ Classroom activities
□ Lectures and discussion of exercises

■ Individually scheduled activities
□ Progress meetings

□ Project presentations

■ Asynchronous activities
□ Working on exercises and project

■ Strict deadlines
□ Submission of exercises and course project



29

Ilias

Platform for questions, discussions, and
sharing additional material

■ Please register for the course
■ Use it for all questions related to the course
■ Messages sent to all students go via the Ilias

forum (pro tip: enable notifications)

Link to Ilias course on
software-lab.org/teaching/winter2023/pa/



30 - 2

A Friendly Warning

■ Do the exercises
■ Work regularly on the course project

This is not going to be
an easy course!

... but the effort is worth it!



31

Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Course projects
□ Term paper
□ Mid-term and final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.



2



3



4



5



6



7



8


