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About Me: Michael Pradel

■ Since 9/2019: Full Professor
at University of Stuttgart

■ Before Stuttgart
□ Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
□ PhD at ETH Zurich, Switzerland
□ Postdoctoral researcher at UC Berkeley, USA
□ Assistant Professor at TU Darmstadt
□ Sabbatical at Facebook, Menlo Park, USA
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About the Software Lab

■ My research group since 2014
■ Focus: Tools and techniques for

building reliable, efficient, and secure
software
□ Program testing and analysis
□ Machine learning, security

■ Thesis and job opportunities
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Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Lectures, exercises, course project
□ Final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.
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What is program analysis?
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Program Testing & Analysis

What you probably know:

■ Manual testing or semi-automated
testing:
JUnit, Pytest, Selenium, etc.

■ Manual ”analysis” of programs:
Code inspection, debugging, etc.

Focus of this course:
Automated testing and program analysis
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Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm
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Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

0.5-25/KLoC
in delivered
software
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Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

1.5 years to
find a bug
[Palix2011]
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Why Do We Need It?

■ All software has bugs
■ Bugs are hard to find
■ Bugs cause serious harm

Ariane 5 Northeast
blackout

Therac-25
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What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

ProgramInput Output
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What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output
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Static vs. Dynamic Analysis

Static Dynamic

■ Analyze source code,
byte code, or binary

■ Typically:
□ Consider all inputs
□ Overapproximate

possible behavior

■ Analyze program
execution

■ Typically:
□ Consider current

input
□ Underapproximate

possible behavior
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Static vs. Dynamic Analysis

Static Dynamic

■ Analyze source code,
byte code, or binary

■ Typically:
□ Consider all inputs
□ Overapproximate

possible behavior

■ Analyze program
execution

■ Typically:
□ Consider current

input
□ Underapproximate

possible behavior

E.g., compilers,
lint-like tools

E.g., automated
testing, profilers
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Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

What are the possible outputs?
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Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Overapproximation: ”yes”, ”no”, ”maybe”
■ Consider all paths (that are feasible based on

limited knowledge)
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Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Underapproximation: ”yes”
■ Execute the program once
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Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = "yes";
if (r < 0.5)
out = "no";

if (r === 1)
out = "maybe"; // infeasible path

console.log(out);

Sound and complete: ”yes”, ”no”
■ For this example: Can explore both feasible paths
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Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

What are the possible outputs?
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Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Overapproximation: Any value
■ Consider all paths (that are feasible based on

limited knowledge about random())
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Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Underapproximation:
Some number in [0,2), e.g., 1.234
■ Execute the program once
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Another Example

// JavaScript
var r = Math.random(); // value in [0,1)
var out = r * 2;
console.log(out);

Sound and complete?
■ Exploring all possible outputs:

Practically impossible
■ This is the case for most real-world programs



1



13

Test Generation

■ Dynamic analysis:
Requires input to run the program

■ Test generation:
Creates inputs automatically

■ Examples
□ Generate JUnit tests:

Input = sequence of method calls
□ UI-level test generation:

Input = sequence UI events
□ Fuzz-test a compiler: Input = program
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How Does All This Help Me?

■ Use program analysis tools
□ Improve the quality of your code

■ Understand program analysis
□ Better understanding of program behavior

■ Create your own tools
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Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Lectures, exercises, course project
□ Final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.
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Organization

■ Lectures

■ Exercises

■ Course project

■ Final exam
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Organization

■ Lectures

■ Exercises

■ Course project

■ Final exam

Grading:

10%

40%

50%
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Lectures

■ 15 lectures

■ Mondays (3:45pm) and
Tuesdays (11:30am)

□ Not all slots are used: Check the schedule
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Exercises

■ 4 exercises

■ Pen and paper

■ Timeline

□ Published on day X

□ Submission due on X + 7 days

□ Discussion session soon afterwards

■ Individual work: No collaboration or
sharing of solutions
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Course Project

■ Design, implement, and evaluate a
program analysis based on an existing
framework

□ Dynamic analaysis of Python code

□ Based on DynaPyt framework:
https://github.com/sola-st/DynaPyt

■ Individual, independent project
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Mentoring

Each student has a mentor

■ First point of contact for all

project-related questions

■ Three 1:1 progress meetings

■ Email or schedule additional meetings when

needed

Beatriz
Souza

Aryaz
Eghbali
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Course Project: Timeline

■ Published on November 6

■ Three progress meetings

■ Due on February 1

□ Implementation and results

□ Report

■ Presentation: February 5 to 9
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Course Project: Timeline

■ Published on November 6

■ Three progress meetings

■ Due on February 1

□ Implementation and results

□ Report

■ Presentation: February 5 to 9

Grading:
(% of overall
grade)

10%

10%

10%

10%
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Academic Integrity

■ Work you submit must be your own

■ Unauthorized group efforts and any
form of plagiarism are considered
academic dishonesty and will be
punished

■ Allowed to discuss the problem with
your peers, but not to reuse any part
of an existing solution
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Final Exam

■ Content of lectures and reading
material

■ Written

■ One hour

■ Open-book
□ Tests your understanding, not your knowledge
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Vertiefungsprüfung

Alternative to written exam:
Combined oral exam

■ A.k.a. “Vertiefungsprüfung”

■ Oral exam about content of two related courses

■ Specialization/“Vertiefungslinie”:

Software analysis

■ Rules for course project etc. are the same
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Foundations
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Static
analysis
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Input
generation
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Dynamic
analysis
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Exercise 1

Exercise 4

Exercise 2

Exercise 3
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Content

Introduction and basics
Operational semantics
Data flow analysis
Slicing
Dynamic analysis frameworks
Test generation (fuzzing, symbolic)
Information flow analysis
Call graphs
Path profiling
Analyzing concurrent programs

Course
project
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Learning Material

There is no script or single book that
covers everything

■ Slides and hand-written nodes:
Available after lecture

■ Pointers to papers, book chapters, and web
resources
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Programming Language

Most concepts taught in this course:
Language-independent

Examples:
Various programming languages
■ JavaScript, Java, C++, Python, etc.

Course project: Python
■ Both target language and analysis language
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Schedule

■ Classroom activities
□ Lectures and discussion of exercises

■ Individually scheduled activities
□ Progress meetings

□ Project presentations

■ Asynchronous activities
□ Working on exercises and project

■ Strict deadlines
□ Submission of exercises and course project
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Ilias

Platform for questions, discussions, and
sharing additional material

■ Please register for the course
■ Use it for all questions related to the course
■ Messages sent to all students go via the Ilias

forum (pro tip: enable notifications)

Link to Ilias course on
software-lab.org/teaching/winter2023/pa/
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A Friendly Warning

■ Do the exercises
■ Work regularly on the course project

This is not going to be
an easy course!

... but the effort is worth it!
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Plan for Today

■ Introduction
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Course projects
□ Term paper
□ Mid-term and final exam

■ Foundations
□ Grammars, ASTs, CFGs, etc.
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