Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024
1

Warm-up Quiz

var a;

var a, a;

var a, a, a = a;

a = eval("var a;")

a = function a(a, a) {
return a;

}

a =a(ull, a);

console.log(a.name) ;

- 1

Warm-up Quiz

var a;

var a, a;

var a, a, a = a;

a = eval("var a;")

a = function a(a, a) {
return a;

}

a =a(ull, a);

console.log(a.name) ;

Result: a

Warm-up Quiz

var a;

var a, a;

var a, a, a = a;
a = eval('"var a;")

a = function a(a, a) { -—

return a; _ _
} a Is a function that

a = a(null, a); =— _ returns the second
console.log(a.name) ; .
og () argument, i.e., the

function itself

Result: a

Outline

1. Introduction
2. Information Flow Policy
3. Analyzing Information Flows

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

Secure Computing Systems

= Overall goal: Secure the data
manipulated by a computing system

= Enforce a security policy

o Confidentiality: Secret data does not leak to
non-secret places

o Integrity: High-integrity data is not influenced
by low-integrity data

Information Flow

= Goal of information flow analysis:

Check whether information from one
“place” propagates to another “place”

o For program analysis, "place” means, e.g.,
code location or variable

= Complements techniques that impose

limits on releasing information
1 Access control lists
o Cryptography

. ?\mce >

A1}

N
AV

I ijum

WH,\.;L \Aetd oAax-\‘”\

UV\JT“V\J‘A
V)U\UL

89

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 1234;
var X = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

- 1

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 123:17 Secret information
var X = cred:l.tCa.rdNb; propagates to x
var visible = false;
if (x > 1000) {

visible = true; ~——— Secret information

} (partly) propagates
fo visible

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident
var x = userInput();
var designatedPresident

"Michael";

I
Ky

- 1

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
var designatedPresident = x;

\

Low-integrity information
propagates to high-integrity
variable

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael';
var x = userInput();
if (x.length === 5) {

var designatedPresident = "Paul";
}

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
if (x.length ===15) { =

var designatedPresident = "PaulN
}

Low-integrity information
propagates to high-integrity
variable

Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)

Tracking Security Labels

How to analyze the flow of information?

= Assign to each value some meta
information that tracks the secrecy of
the value

= Propagate meta information on
program operations

10

£ rnmple
— s
cedik Cord Vb = 123)
;; s eoi b Card NG
:fsilob = dalse
(> 1000
teibles Trwe

ot

CO\A‘J'GQMs a

gecruf* vale

90

Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

m Variation of confidential input does not cause a
variation of public output

m Attacker cannot observe any difference between
two executions that differ only in their confidential
input

12

Outline

1. Introduction

2. Information Flow Policy -«
3. Analyzing Information Flows

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

13

Lattice of Security Labels

How to represent different levels of
secrecy?
= Set of security labels

= Arranged in a universally bounded
lattice

14

L,A‘HiC'L g EX“WPL'>

'\’\‘>L‘ Tb() N c»e/\'
| !
Cevret
L ow |
Qov&,“o{w\l\‘«[
l
?w‘ob\ C

(f*wowa \50 Y(r"\/v\ naone 5ccv~o\' Jtcv»-w‘J‘L) o st
Jr“o (o S/acro"' ch\r\r“‘j Ctksﬂes\

91

| o

Uwivevso U\,)

BO\AM OL‘O(Lh"""'ets

T

‘mvw

L,u\/\ﬁf‘e,

’*14_\7—‘@‘@3

S .. set of secunhy classes
TALE C, AR, BC, AC, AZC, &

- . Pw'—lw‘J orduar

_I-— - [OW(,(\00%0\ ;2/

T - \/\”ur]OO\MI‘CJ AR C -
~ cxS =S
@ N least \Ar‘)w bouwrd of_grc"o . X
wniom eg- ABQ A = AR BFOAC > AC

@ .- 3%‘\'1%'\‘ ‘\')\AQF B.Ouv\c\ &rﬁq}‘\of . S,(S R S
e s eehon LA' ﬁBC@ Cs ¢

92

93

) Vers a A Lownded latices [«

)

E—

YR J
1N C S
. ¢_><l)
D E A
> ¥ / l
O
b@ﬁ = 2 WO W‘{){f-
. Hate COuwmnnon owind
wp el ‘:>0v~v\0‘3 (\NA W_‘t>
(i 2, <) ¢

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

Goal:
No flow from
source to sink

18 -

1

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

var creditCardNb = 1234;
Goal: var X = creditCardNb;

No flow from var visible = false;
if (x > 1000) {

source to sink visible = true;
}

18 -

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information

m Untrusted sinks x
var creditCardNb =|1234;
Goal: var x = creditCardNb;
No ﬂow from var|visible |= false;

] if (x > 1000) {
source to sink visible = true;

} 18 -

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequent

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}

19 -

1

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequent

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23]
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value

19 -

Outline

1. Introduction
2. Information Flow Policy

3. Analyzing Information Flows <«

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

20

Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
m Detect vulnerable code (e.g, potential SQL
Injections)
m Detect malicious code (e.g., privacy violations)

m Check if program behaves as expected (e.q.,
secret data should never be written to console)

21

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

22 -

1

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

22 -

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

} x > 1000tovisible

Explicit flow from

22 -

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence +—__ Some analyses consider

only these
= Implicit flows: Caused by control flow

dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

) x > 1000tovisible

Explicit flow from

22 -

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information may flow from
secret source to untrusted sink

= Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

23 -

1

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information may flow from
secret source to untrusted sink

a| Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

Focus of rest of this lecture

23 -

2

Taint Sources and Sinks

s Possible sources:
o Variables
o Return values of a
particular function
o Data from a
particular 1/0O stream

24 -

1

Taint Sources and Sinks

s Possible sources:
o Variables
o Return values of a
particular function
o Data from a
particular 1/0O stream

s Possible sinks:
o Variables
o Parameters given to
a particular function
o Instructions of a
particular type (e.g.,
jump instructions)

24 -

Taint Sources and Sinks

s Possible sources: = Possible sinks:

o Variables o Variables

o Return values of a 0 Parameters given to
particular function a particular function

n Data from a o Instructions of a
particular 1/0O stream particular type (e.g.,

jump instructions)

Report illegal flow if taint marking flows
to a sink to which it should not flow

24 -

Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label(result) < label(inp,) & ... @ label (inpy,)

25

Taint Propagation (2)

2) Implicit flows

Maintain security stack S: Labels of all values
that influence the current flow of control

When z influences a branch decision at location
loc, push label(x) on S

When control flow reaches immediate
post-dominator of loc, pop label(x) from S

When an operation is executed while S'is
non-empty, consider all labels on S as input to the

operation
26

94

L xowple 4

?\‘)Uc\g g : Stcurﬂb CLA\ScS : P\NL:\AQ, Mcrc"')
soufce VG\V\'A,IQ(.(, " (/MO[;""C&ral Nl:
cunle varable T siable

cgitCordNb = 423 4 e bel (i Card b)Y = eeret
« = credid Cocd N5 ¢ arp Wk &\DW‘. lobed (x) = ser<t
nsible = falic el (viesl) = publec
£ (< >1000) f§ o produa ekemedinte valee L
bl zteee Flib) = label ()@ kel (1000)
s et D pobic = ceeret
; PML\ “secw‘p ot S

o Laeble) < scect (@D Labd (Feue)
= secmt @ r\,»b\a‘c, = gcmL
-—-)V‘\Q\O\"\;Qn bi fo‘;‘j

Example 2: Quiz

var x = getX(); PO"CY:

var y = x + 5; _

var z = true; m Security classes:
if (y === 10) public, secret

) z = false; = Source: getX ()
co(z); s Sink: foo ()

Suppose that getXx returns 5. Write down
the labels after each operation.

Is there a policy violation?

28

—— (Qvlﬁd (K\7 Mcrfj\"

. - cec 4
— lbd (D\ = Secr(/"'@ {y\,'oLc = Sec e
 — \wL«X\ (:\:\: ()\A‘QL:C
& PV‘S\“ Msfc,rc\'” 4o S

—=

Lpu\a‘.i (Q\ = S{U‘C'\' @ Pw‘olﬂ(, — S¢¢w+

P‘”P Y eerh A ,E(‘Q\M S

95

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;
1f (secret)

X = true;

29 -

1

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;]]
if (secret) Copies secret into x

X = true; But: Execution where

secret iS false does not
propagate anything

29 -

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,
and bQ:
m Conservatively overapproximate which values

may be defined in b,
m Add spurious definitions into by

30 -

1

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,

and bQ:
m Conservatively overapproximate which values
may be defined in b,
m Add spurious definitions into by

var x = false; _
if (secret) All executions propagate

X = true; ’secret” label to x
else
x = X; // spurious definition

30 -

Implementation in Dytan

Dynamic information flow analysis for
Xx86 binaries

m Taint markings stored as bit vectors
m One bit vector per byte of memory

m Propagation implemented via instrumentation
(i.e., add instructions to existing program)

m Computes immediate post-dominators via static
control flow graph

31

Outline

1. Introduction
2. Information Flow Policy
3. Analyzing Information Flows \/

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

32

