
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Information Flow Analysis



2 - 1

Warm-up Quiz

var a;
var a, a;
var a, a, a = a;
a = eval("var a;")
a = function a(a, a) {

return a;
}
a = a(null, a);
console.log(a.name);
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Warm-up Quiz

var a;
var a, a;
var a, a, a = a;
a = eval("var a;")
a = function a(a, a) {

return a;
}
a = a(null, a);
console.log(a.name);

Result: a

a is a function that
returns the second
argument, i.e., the
function itself
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Secure Computing Systems

■ Overall goal: Secure the data
manipulated by a computing system

■ Enforce a security policy
□ Confidentiality: Secret data does not leak to

non-secret places

□ Integrity: High-integrity data is not influenced
by low-integrity data
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Information Flow

■ Goal of information flow analysis:

Check whether information from one
”place” propagates to another ”place”
□ For program analysis, ”place” means, e.g.,

code location or variable

■ Complements techniques that impose
limits on releasing information
□ Access control lists
□ Cryptography
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Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}
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Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Secret information
propagates to x

Secret information
(partly) propagates
to visible
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;

Low-integrity information
propagates to high-integrity
variable
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Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}
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Example: Integrity

userInput should not influence who
becomes president

Low-integrity information
propagates to high-integrity
variable

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}
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Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)
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Tracking Security Labels

How to analyze the flow of information?

■ Assign to each value some meta
information that tracks the secrecy of
the value

■ Propagate meta information on
program operations
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Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

■ Variation of confidential input does not cause a
variation of public output

■ Attacker cannot observe any difference between
two executions that differ only in their confidential
input
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Lattice of Security Labels

How to represent different levels of
secrecy?

■ Set of security labels

■ Arranged in a universally bounded
lattice
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Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

Goal:
No flow from
source to sink



18 - 2

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



18 - 3

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



19 - 1

Declassification

■ ”No flow from high to low” is impractical

■ E.g., code that checks password against a hash
value propagates information to subsequent
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}
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Declassification

■ ”No flow from high to low” is impractical

■ E.g., code that checks password against a hash
value propagates information to subsequent
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
■ Detect vulnerable code (e.g, potential SQL

injections)

■ Detect malicious code (e.g., privacy violations)

■ Check if program behaves as expected (e.g.,
secret data should never be written to console)
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Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence
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Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
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Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x > 1000 to visible
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Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence

Some analyses consider
only these

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x > 1000 to visible
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Static and Dynamic Analysis

■ Static information flow analysis
□ Overapproximate all possible data and control

flow dependences
□ Result: Whether information may flow from

secret source to untrusted sink

■ Dynamic information flow analysis
□ Associate security labels (”taint markings”)

with memory locations
□ Propagate labels at runtime
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Static and Dynamic Analysis

■ Static information flow analysis
□ Overapproximate all possible data and control

flow dependences
□ Result: Whether information may flow from

secret source to untrusted sink

■ Dynamic information flow analysis
□ Associate security labels (”taint markings”)

with memory locations
□ Propagate labels at runtime

Focus of rest of this lecture
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Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream
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Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream

■ Possible sinks:
□ Variables
□ Parameters given to

a particular function
□ Instructions of a

particular type (e.g.,
jump instructions)
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Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream

Report illegal flow if taint marking flows
to a sink to which it should not flow

■ Possible sinks:
□ Variables
□ Parameters given to

a particular function
□ Instructions of a

particular type (e.g.,
jump instructions)
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Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label(result)← label(inp1)⊕ ...⊕ label(inpk)
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Taint Propagation (2)

2) Implicit flows
■ Maintain security stack S: Labels of all values

that influence the current flow of control

■ When x influences a branch decision at location
loc, push label(x) on S

■ When control flow reaches immediate
post-dominator of loc, pop label(x) from S

■ When an operation is executed while S is
non-empty, consider all labels on S as input to the
operation
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Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
■ Security classes:

public, secret
■ Source: getX()
■ Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?
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Hidden Implicit Flows

■ Implicit flows may happen even
though a branch is not executed

■ Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;
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Hidden Implicit Flows

■ Implicit flows may happen even
though a branch is not executed

■ Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;

Copies secret into x

But: Execution where
secret is false does not
propagate anything
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Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
■ Conservatively overapproximate which values

may be defined in b1

■ Add spurious definitions into b2
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Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
■ Conservatively overapproximate which values

may be defined in b1

■ Add spurious definitions into b2

var x = false;
if (secret)
x = true;

else
x = x; // spurious definition

All executions propagate
”secret” label to x
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Implementation in Dytan

Dynamic information flow analysis for
x86 binaries

■ Taint markings stored as bit vectors

■ One bit vector per byte of memory

■ Propagation implemented via instrumentation
(i.e., add instructions to existing program)

■ Computes immediate post-dominators via static
control flow graph
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Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007
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