
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Information Flow Analysis



2 - 1

Warm-up Quiz

var a;
var a, a;
var a, a, a = a;
a = eval("var a;")
a = function a(a, a) {

return a;
}
a = a(null, a);
console.log(a.name);



2 - 2

Warm-up Quiz

var a;
var a, a;
var a, a, a = a;
a = eval("var a;")
a = function a(a, a) {

return a;
}
a = a(null, a);
console.log(a.name);

Result: a



2 - 3

Warm-up Quiz

var a;
var a, a;
var a, a, a = a;
a = eval("var a;")
a = function a(a, a) {

return a;
}
a = a(null, a);
console.log(a.name);

Result: a

a is a function that
returns the second
argument, i.e., the
function itself



3

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



4

Secure Computing Systems

■ Overall goal: Secure the data
manipulated by a computing system

■ Enforce a security policy
□ Confidentiality: Secret data does not leak to

non-secret places

□ Integrity: High-integrity data is not influenced
by low-integrity data



5

Information Flow

■ Goal of information flow analysis:

Check whether information from one
”place” propagates to another ”place”
□ For program analysis, ”place” means, e.g.,

code location or variable

■ Complements techniques that impose
limits on releasing information
□ Access control lists
□ Cryptography



89



7 - 1

Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}



7 - 2

Example: Confidentiality

Credit card number should not leak to
visible

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Secret information
propagates to x

Secret information
(partly) propagates
to visible



8 - 1

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;



8 - 2

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
var designatedPresident = x;

Low-integrity information
propagates to high-integrity
variable



8 - 3

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}



8 - 4

Example: Integrity

userInput should not influence who
becomes president

Low-integrity information
propagates to high-integrity
variable

var designatedPresident = "Michael";
var x = userInput();
if (x.length === 5) {
var designatedPresident = "Paul";

}



9

Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)



10

Tracking Security Labels

How to analyze the flow of information?

■ Assign to each value some meta
information that tracks the secrecy of
the value

■ Propagate meta information on
program operations



90



12

Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

■ Variation of confidential input does not cause a
variation of public output

■ Attacker cannot observe any difference between
two executions that differ only in their confidential
input



13

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



14

Lattice of Security Labels

How to represent different levels of
secrecy?

■ Set of security labels

■ Arranged in a universally bounded
lattice



91



92



93



18 - 1

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

Goal:
No flow from
source to sink



18 - 2

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



18 - 3

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:
■ Lattice of security classes
■ Sources of secret information
■ Untrusted sinks

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Goal:
No flow from
source to sink



19 - 1

Declassification

■ ”No flow from high to low” is impractical

■ E.g., code that checks password against a hash
value propagates information to subsequent
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}



19 - 2

Declassification

■ ”No flow from high to low” is impractical

■ E.g., code that checks password against a hash
value propagates information to subsequent
statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value



20

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007



21

Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
■ Detect vulnerable code (e.g, potential SQL

injections)

■ Detect malicious code (e.g., privacy violations)

■ Check if program behaves as expected (e.g.,
secret data should never be written to console)



22 - 1

Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence



22 - 2

Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}



22 - 3

Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x > 1000 to visible



22 - 4

Explicit vs. Implicit Flows

■ Explicit flows: Caused by data flow
dependence

■ Implicit flows: Caused by control flow
dependence

Some analyses consider
only these

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {
visible = true;

}

Explicit flow from
creditCardNb to x

Implicit flow from
x > 1000 to visible



23 - 1

Static and Dynamic Analysis

■ Static information flow analysis
□ Overapproximate all possible data and control

flow dependences
□ Result: Whether information may flow from

secret source to untrusted sink

■ Dynamic information flow analysis
□ Associate security labels (”taint markings”)

with memory locations
□ Propagate labels at runtime



23 - 2

Static and Dynamic Analysis

■ Static information flow analysis
□ Overapproximate all possible data and control

flow dependences
□ Result: Whether information may flow from

secret source to untrusted sink

■ Dynamic information flow analysis
□ Associate security labels (”taint markings”)

with memory locations
□ Propagate labels at runtime

Focus of rest of this lecture



24 - 1

Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream



24 - 2

Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream

■ Possible sinks:
□ Variables
□ Parameters given to

a particular function
□ Instructions of a

particular type (e.g.,
jump instructions)



24 - 3

Taint Sources and Sinks

■ Possible sources:
□ Variables
□ Return values of a

particular function
□ Data from a

particular I/O stream

Report illegal flow if taint marking flows
to a sink to which it should not flow

■ Possible sinks:
□ Variables
□ Parameters given to

a particular function
□ Instructions of a

particular type (e.g.,
jump instructions)



25

Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label(result)← label(inp1)⊕ ...⊕ label(inpk)



26

Taint Propagation (2)

2) Implicit flows
■ Maintain security stack S: Labels of all values

that influence the current flow of control

■ When x influences a branch decision at location
loc, push label(x) on S

■ When control flow reaches immediate
post-dominator of loc, pop label(x) from S

■ When an operation is executed while S is
non-empty, consider all labels on S as input to the
operation



94



28

Example 2: Quiz

var x = getX();
var y = x + 5;
var z = true;
if (y === 10)
z = false;

foo(z);

Policy:
■ Security classes:

public, secret
■ Source: getX()
■ Sink: foo()

Suppose that getX returns 5. Write down
the labels after each operation.

Is there a policy violation?



95



29 - 1

Hidden Implicit Flows

■ Implicit flows may happen even
though a branch is not executed

■ Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;



29 - 2

Hidden Implicit Flows

■ Implicit flows may happen even
though a branch is not executed

■ Approach explained so far will
miss such ”hidden” flows

// label(x) = public, label(secret) = private
var x = false;
if (secret)
x = true;

Copies secret into x

But: Execution where
secret is false does not
propagate anything



30 - 1

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
■ Conservatively overapproximate which values

may be defined in b1

■ Add spurious definitions into b2



30 - 2

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b1

and b2:
■ Conservatively overapproximate which values

may be defined in b1

■ Add spurious definitions into b2

var x = false;
if (secret)
x = true;

else
x = x; // spurious definition

All executions propagate
”secret” label to x



31

Implementation in Dytan

Dynamic information flow analysis for
x86 binaries

■ Taint markings stored as bit vectors

■ One bit vector per byte of memory

■ Propagation implemented via instrumentation
(i.e., add instructions to existing program)

■ Computes immediate post-dominators via static
control flow graph



32

Outline

1. Introduction

2. Information Flow Policy

3. Analyzing Information Flows

Mostly based on these papers:

■ A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

■ Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

✓


