Program Analysis Data Flow Analysis (Part 3)

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart Winter 2023/2024

Warm-up Quiz

What does this JavaScript code print?

var a, b; var x = {}; x[a] = 23; console.log(x[b]);

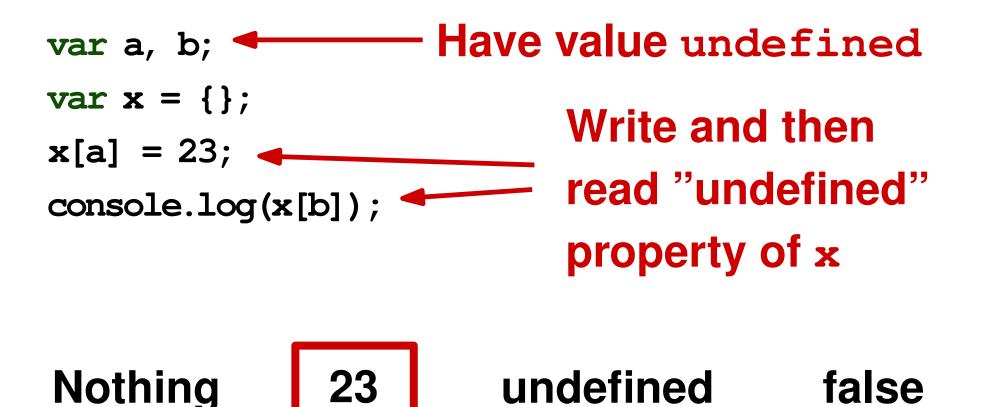
Nothing 23 undefined false

Warm-up Quiz

What does this JavaScript code print?

var a, b; var x = {}; x[a] = 23; console.log(x[b]);

What does this JavaScript code print?



Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities

Very Busy Expression Analysis

Goal: For each program point, find expressions that must be very busy

- "Very busy": On all future paths, expression will be used before any of the variables in it are redefined
- Useful for program optimizations, e.g., hoisting
 - Hoisting an expression: Pre-compute it, e.g., before entering a block, for later use

if (a > b) {
 x = b - a;
 y = a - b;
} else {
 y = b - a;
 x = a - b;
}

a - b and b - a are very busy here

Defining the Analysis

- Domain: All non-trivial expressions occurring in the code
- Direction: Backward
- Meet operator: Intersection
 - Because we care about very busy expressions
 that *must* be used

Defining the Analysis (2)

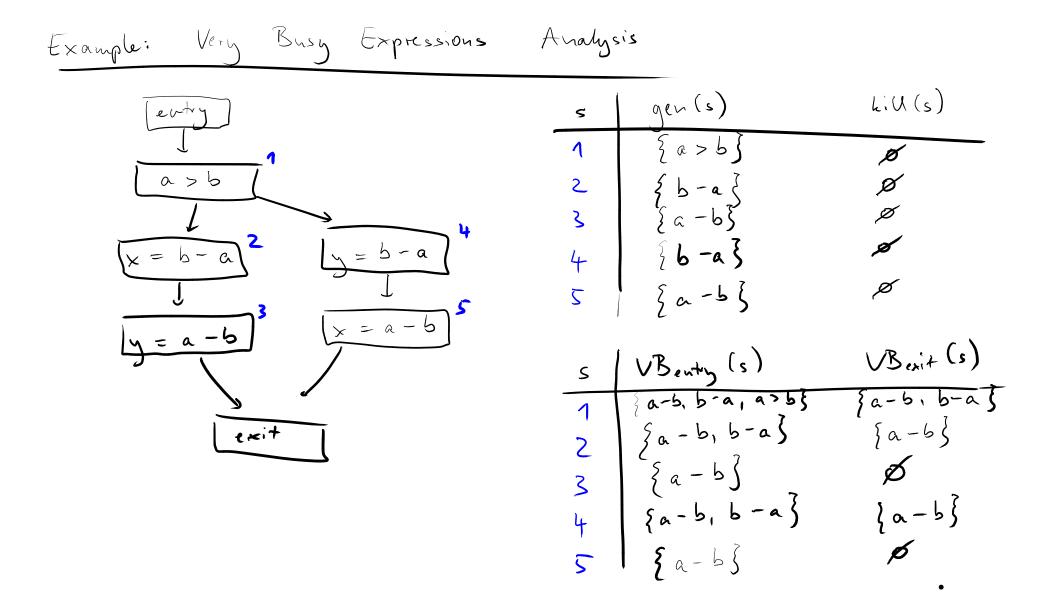
Transfer function:

 $VB_{entry}(s) = (VB_{exit}(s) \setminus kill(s)) \cup gen(S)$

- Backward analysis: Returns expressions that are very busy expressions at entry of statement
- Function gen(s)
 - \Box All expressions *e* that appear in *s*
- Function *kill(s)*
 - \Box If s assigns to x, all expressions in which x occurs
 - □ Otherwise: Empty set

Defining the Analysis (3)

- Boundary condition: Final node starts with no very busy expressions
 - $\Box VB_{exit}(finalNode) = \emptyset$
- Initially, all nodes have no very busy expressions



Live Variables Analysis

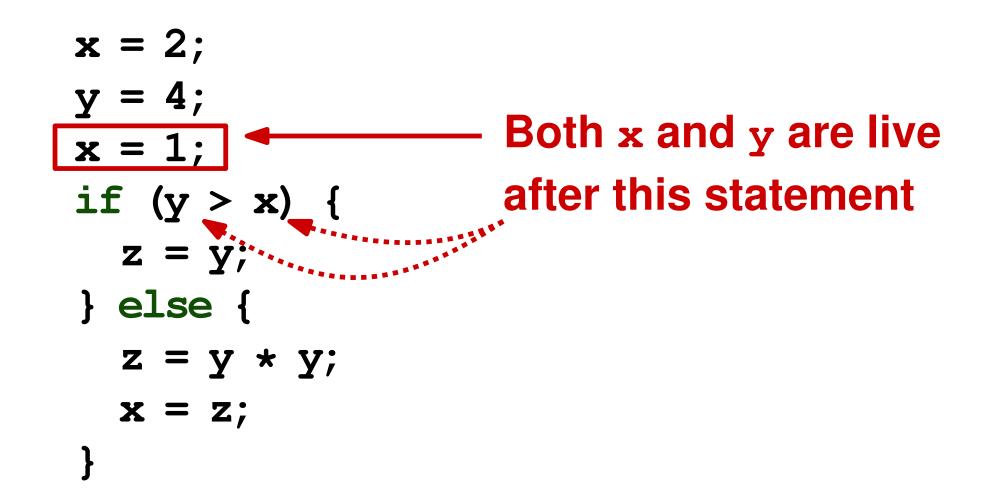
Goal: For each statement, find variables that are may be "live" at the exit from the statement

- "Live": The variable is used before being redefined
- Useful, e.g., for identifying dead code
 - Bug detection: Dead assignments are typically unintended
 - Optimization: Remove dead code

x = 2;y = 4;x = 1;if (y > x) { z = y; } else { $z = y \star y;$ $\mathbf{x} = \mathbf{z};$ }

x = 2; y = 4;x = 1;if (y > x) { z = y;} else { $z = y \star y;$ $\mathbf{x} = \mathbf{z};$ }

x is not live after this statement



Defining the Analysis

- Domain: All variables occurring in the code
- Direction: Backward
- Meet operator: Union
 - Because we care about whether a variable may be used

Defining the Analysis (2)

Transfer function:

 $LV_{entry}(s) = (LV_{exit}(s) \setminus kill(s)) \cup gen(S)$

- Backward analysis: Returns set of variables that are live at entry of statement
- Function gen(s)

 $\hfill\square$ All variables v that are used in s

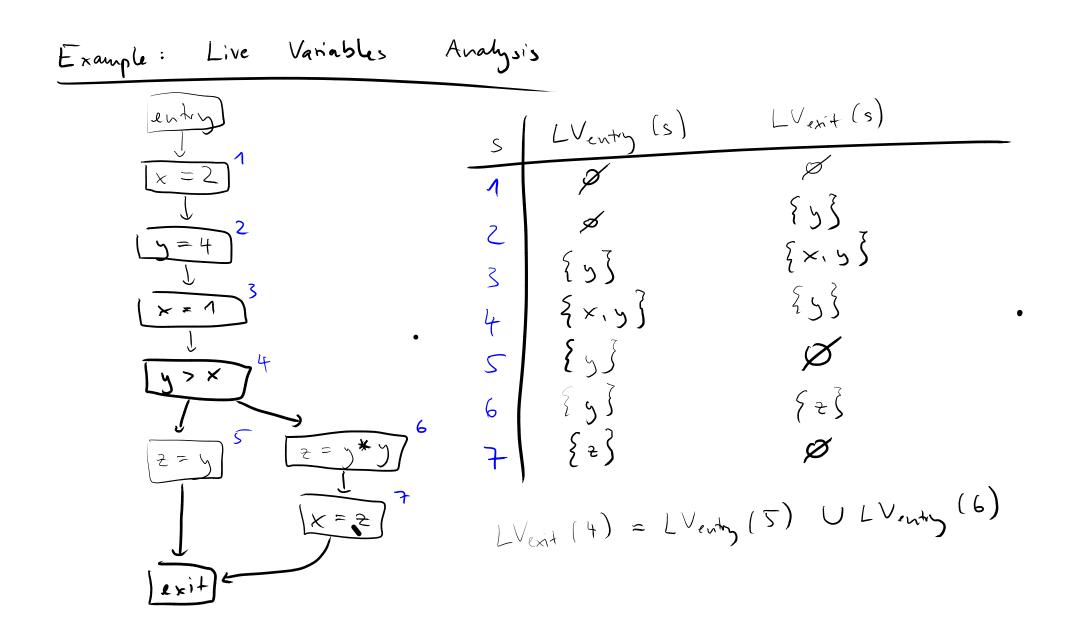
- Function kill(s)
 - \Box If s assigns to x, then it kills x
 - Otherwise: Empty set

Defining the Analysis (3)

Boundary condition: Final node starts with no live variables

 $\Box \ LV_{exit}(finalNode) = \emptyset$

Initially, all nodes have no live variables



Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities

Data Flow Equations

Transfer functions yield data flow equations for each statement

 \Box At entry, e.g., $AE_{entry}(2) = \dots$

 \Box At exit, e.g., $AE_{exit}(3) = \dots$

depend on each other

May

How to solve these equations?

□ Goal: Fix point, i.e., nothing changes anymore

Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 - \Box Initialize entry and exit set of s
- While sets are still changing
 - \Box For each statement s
 - Update entry set of *s* by applying meet operator to exit sets of incoming statements
 - Compute exit set of *s* based on its entry set

Algorithms assume forward analysis (analogous for backward a.) 55 - 1

Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 Initialize entry and exit set of s
 While sets are still changing
 For each statement s
 Repeatedly
 Computes each set, even if the input hasn't changed
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of *s* based on its entry set

Algorithms assume forward analysis (analogous for backward a.) 55 - 2

Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial node
- While W not empty
 - \Box Remove a statement *s* from *W*
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - \Box Compute exit set of *s* based on its entry set
 - □ If exit set has changed (or statement visited for the first time): Add successors of s to W

Algorithms assume forward analysis (analogous for backward a.) ^{56 - 1}

Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial node
- While W not empty

Work list: Statements

Remove a statement s from W processed

 $\hfill\square$ Update entry set of s by applying meet operator to

exit sets of incoming statements

- \Box Compute exit set of *s* based on its entry set
- □ If exit set has changed (or statement visited for the first time): Add successors of s to W

Algorithms assume forward analysis (analogous for backward a.) ^{56 - 2}

Work List Algorithm : Example (Avail. Expr.)

$$\frac{1}{x = a + b} = \frac{1}{a + b} = \frac{1}{a$$

Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - No infinite ascending chains $X1 < X2 < \dots$
 - □ Transfer function and meet operator:

Monotonic w.r.t. partial order

• Sets stay the same or grow larger

Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - No infinite ascending chains $X1 < X2 < \dots$
 - □ Transfer function and meet operator:

Monotonic w.r.t. partial order

• Sets stay the same or grow larger

Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities

Intra- vs. Inter-procedural

Intra-procedural analysis

Reason about a function in isolation

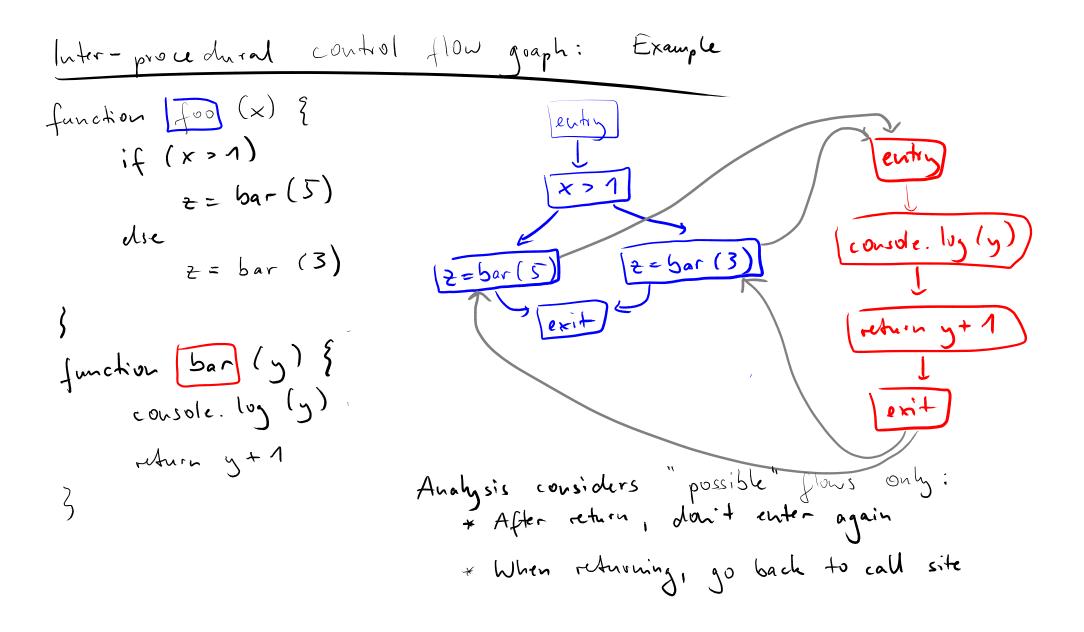
Inter-procedural analysis

- Reason about multiple functions
- Calls and returns

Data flow analyses considered so far: Intra-procedural

Inter-procedural Control Flow

- One control flow graph per function
- Connect call sites to entry node of callee
- Connect exit node back to call site



Propagating Information

Arguments passed into call

□ Propagate to formal parameters of callee

Return value

Propagate back to caller

Local variables

- Do not propagate into callee
- Instead, when call returned, continue with state just before call

Propagating Information

Arguments passed into call

□ Propagate to formal parameters of callee

Return value

Propagate back to caller

Local variables

- Do not propagate into callee
- □ Instead, when call returned, continue with state

just before call

For backward analysis: Everything in reverse

Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities