
37

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Data Flow Analysis (Part 3)



38 - 1

Warm-up Quiz

var a, b;

var x = {};

x[a] = 23;

console.log(x[b]);

What does this JavaScript code print?

Nothing 23 undefined false



38 - 2

Warm-up Quiz

var a, b;

var x = {};

x[a] = 23;

console.log(x[b]);

What does this JavaScript code print?

Nothing 23 undefined false



38 - 3

Warm-up Quiz

var a, b;

var x = {};

x[a] = 23;

console.log(x[b]);

What does this JavaScript code print?

Nothing 23 undefined false

Have value undefined

Write and then
read ”undefined”
property of x



39

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities



40

Very Busy Expression Analysis

Goal: For each program point, find
expressions that must be very busy

■ ”Very busy”: On all future paths, expression will

be used before any of the variables in it are

redefined

■ Useful for program optimizations, e.g., hoisting

□ Hoisting an expression: Pre-compute it, e.g., before

entering a block, for later use



41 - 1

Example

if (a > b) {
x = b - a;
y = a - b;

} else {
y = b - a;
x = a - b;

}



41 - 2

Example

if (a > b) {
x = b - a;
y = a - b;

} else {
y = b - a;
x = a - b;

}

a - b and b - a

are very busy here



42

Defining the Analysis

■ Domain: All non-trivial expressions
occurring in the code

■ Direction: Backward

■ Meet operator: Intersection

□ Because we care about very busy expressions

that must be used



43

Defining the Analysis (2)

Transfer function:
V Bentry(s) = (V Bexit(s) \ kill(s)) ∪ gen(S)

■ Backward analysis: Returns expressions that are

very busy expressions at entry of statement

■ Function gen(s)

□ All expressions e that appear in s

■ Function kill(s)

□ If s assigns to x, all expressions in which x occurs

□ Otherwise: Empty set



44

Defining the Analysis (3)

■ Boundary condition: Final node starts
with no very busy expressions
□ V Bexit(finalNode) = ∅

■ Initially, all nodes have no very busy
expressions



46



47

Live Variables Analysis

Goal: For each statement, find variables
that are may be “live” at the exit from the
statement

■ ”Live”: The variable is used before being

redefined

■ Useful, e.g., for identifying dead code

□ Bug detection: Dead assignments are typically

unintended

□ Optimization: Remove dead code



48 - 1

Example

x = 2;
y = 4;
x = 1;
if (y > x) {
z = y;

} else {
z = y * y;
x = z;

}



48 - 2

Example

x = 2;
y = 4;
x = 1;
if (y > x) {
z = y;

} else {
z = y * y;
x = z;

}

x is not live
after this
statement



48 - 3

Example

x = 2;
y = 4;
x = 1;
if (y > x) {
z = y;

} else {
z = y * y;
x = z;

}

Both x and y are live
after this statement



49

Defining the Analysis

■ Domain: All variables occurring in the
code

■ Direction: Backward

■ Meet operator: Union

□ Because we care about whether a variable may

be used



50

Defining the Analysis (2)

Transfer function:
LVentry(s) = (LVexit(s) \ kill(s)) ∪ gen(S)

■ Backward analysis: Returns set of variables that are

live at entry of statement

■ Function gen(s)

□ All variables v that are used in s

■ Function kill(s)

□ If s assigns to x, then it kills x

□ Otherwise: Empty set



51

Defining the Analysis (3)

■ Boundary condition: Final node starts
with no live variables
□ LVexit(finalNode) = ∅

■ Initially, all nodes have no live variables



47



53

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities



54

Data Flow Equations

■ Transfer functions yield data flow
equations for each statement
□ At entry, e.g., AEentry(2) = ...

□ At exit, e.g., AEexit(3) = ...

■ How to solve these equations?

□ Goal: Fix point, i.e., nothing changes anymore

May
depend on
each other



55 - 1

Naive Algorithm

Round-robin, iterative algorithm

■ For each statement s

□ Initialize entry and exit set of s

■ While sets are still changing

□ For each statement s

• Update entry set of s by applying meet operator

to exit sets of incoming statements

• Compute exit set of s based on its entry set

Algorithms assume forward analysis (analogous for backward a.)



55 - 2

Naive Algorithm

Round-robin, iterative algorithm

■ For each statement s

□ Initialize entry and exit set of s

■ While sets are still changing

□ For each statement s

• Update entry set of s by applying meet operator

to exit sets of incoming statements

• Compute exit set of s based on its entry set

Repeatedly
computes each
set, even if the
input hasn’t
changed

Algorithms assume forward analysis (analogous for backward a.)



56 - 1

Work List Algorithm
■ For each statement s: Initialize entry and exit set

■ Initialize W with initial node

■ While W not empty

□ Remove a statement s from W

□ Update entry set of s by applying meet operator to

exit sets of incoming statements

□ Compute exit set of s based on its entry set

□ If exit set has changed (or statement visited for the

first time): Add successors of s to W

Algorithms assume forward analysis (analogous for backward a.)



56 - 2

Work List Algorithm
■ For each statement s: Initialize entry and exit set

■ Initialize W with initial node

■ While W not empty

□ Remove a statement s from W

□ Update entry set of s by applying meet operator to

exit sets of incoming statements

□ Compute exit set of s based on its entry set

□ If exit set has changed (or statement visited for the

first time): Add successors of s to W

Work list: Statements
that need to be
processed

Algorithms assume forward analysis (analogous for backward a.)



48



58 - 1

Convergence

Will it always terminate?

■ In principle, work list algorithms may run forever

■ Impose constraints to ensure termination

□ Domain of analysis: Partial order with finite height

• No infinite ascending chains X1 < X2 < ...

□ Transfer function and meet operator:

Monotonic w.r.t. partial order

• Sets stay the same or grow larger



58 - 2

Convergence

Will it always terminate?

■ In principle, work list algorithms may run forever

■ Impose constraints to ensure termination

□ Domain of analysis: Partial order with finite height

• No infinite ascending chains X1 < X2 < ...

□ Transfer function and meet operator:

Monotonic w.r.t. partial order

• Sets stay the same or grow larger

Monotone framework



59

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities



60

Intra- vs. Inter-procedural

■ Intra-procedural analysis

□ Reason about a function in isolation

■ Inter-procedural analysis

□ Reason about multiple functions

□ Calls and returns

■ Data flow analyses considered so far:
Intra-procedural



61

Inter-procedural Control Flow

■ One control flow graph per function

■ Connect call sites to entry node of
callee

■ Connect exit node back to call site



49



63 - 1

Propagating Information

■ Arguments passed into call
□ Propagate to formal parameters of callee

■ Return value
□ Propagate back to caller

■ Local variables
□ Do not propagate into callee

□ Instead, when call returned, continue with state

just before call



63 - 2

Propagating Information

■ Arguments passed into call
□ Propagate to formal parameters of callee

■ Return value
□ Propagate back to caller

■ Local variables
□ Do not propagate into callee

□ Instead, when call returned, continue with state

just before call

For backward analysis: Everything in reverse



64

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities


