
11

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Program Analysis

Data Flow Analysis (Part 2)



12 - 1

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?



12 - 2

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?

Answer: True, False, True



12 - 3

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?

Answer: True, False, True

Returns True except if
any element of the iterable
evaluates to False



12 - 4

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?

Answer: True, False, True

Returns True except if
any element of the iterable
evaluates to False

Empty list ⇒ True



12 - 5

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?

Answer: True, False, True

Returns True except if
any element of the iterable
evaluates to False

Inner, empty list evaluates
to False ⇒ False



12 - 6

Warm-up Quiz

one = all([])
two = all([[]])
three = all([[[]]])

print(f"{one}, {two}, {three}")

What does this Python code print?

Answer: True, False, True

Returns True except if
any element of the iterable
evaluates to False

Inner, non-empty list
evaluates to True ⇒ True



13

Example

var x = a + b;
var y = a * b;
while (y > a + b) {
a = a - 1;
x = a + b;

}



41



15

Propagating Available Expressions

■ Initially, no available expressions

■ Forward analysis: Propagate available
expressions in the direction of control flow

■ For each statement s, outgoing available
expressions are:
incoming avail. exprs. minus kill(s) plus gen(s)

■ When control flow splits, propagate available
expressions both ways

■ When control flows merge, intersect the incoming

available expressions



42



17 - 1

Quiz

var m = x - y;
if (random()) {
while (m > 0) {
x = y + 1;

}
} else {
n = x - y;

}
z = x - y;



17 - 2

Quiz

var m = x - y;
if (random()) {
while (m > 0) {
x = y + 1;

}
} else {
n = x - y;

}
z = x - y;

Is x - y an available
expression when entering
this statement?



17 - 3

Quiz

var m = x - y;
if (random()) {
while (m > 0) {
x = y + 1;

}
} else {
n = x - y;

}
z = x - y;

Is x - y an available
expression when entering
this statement?

No, because
modifying x

kills x - y



18

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities



19

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

■ Domain

■ Direction

■ Transfer function

■ Meet operator

■ Boundary condition

■ Initial values



20

Domain

■ Analysis associates some information
with every program point

□ “Information” means elements of a set

■ Domain of the analysis: All possible
elements the set may have
□ E.g., for available expressions analysis:

Domain is set of non-trivial expressions



21

Direction

■ Analysis propagates information
along the control flow graph

□ Forward analysis: Normal flow of control

□ Backward analysis: Invert all edges

• Reasons about executions in reverse

■ E.g., available expression analysis:
Forward



22

Transfer Function

■ Defines how a statement affects the
propagated information

■ DFexit(s) = some function of DFentry(s)

■ E.g., for available expression analysis:
AEexit(s) = (AEentry(s) \ kill(s)) ∪ gen(s)



23 - 1

Meet Operator

■ What if two statements s1, s2 flow to a
statement s?

□ Forward analysis: Execution branches merge

□ Backward analysis: Branching point

■ Meet operator defines how to combine
the incoming information

□ Union: DFentry(s) = DFexit(s1) ∪DFexit(s2)

□ Intersection: DFentry(s) = DFexit(s1) ∩DFexit(s2)



23 - 2

Meet Operator

■ What if two statements s1, s2 flow to a
statement s?

□ Forward analysis: Execution branches merge

□ Backward analysis: Branching point

■ Meet operator defines how to combine
the incoming information

□ Union: DFentry(s) = DFexit(s1) ∪DFexit(s2)

□ Intersection: DFentry(s) = DFexit(s1) ∩DFexit(s2)

E.g., available expressions analysis



24 - 1

Boundary Condition

■ What information to start with at the first
CFG node?

□ Forward analysis: First node is entry node

□ Backward analysis: First node is exit node

■ Common choices

□ Empty set

□ Entire domain



24 - 2

Boundary Condition

■ What information to start with at the first
CFG node?

□ Forward analysis: First node is entry node

□ Backward analysis: First node is exit node

■ Common choices

□ Empty set

□ Entire domain

E.g., available expressions analysis



25 - 1

Initial Values

■ What is the information to start with at
intermediate nodes?

■ Common choices

□ Empty set

□ Entire domain



25 - 2

Initial Values

■ What is the information to start with at
intermediate nodes?

■ Common choices

□ Empty set

□ Entire domain

E.g., available expressions analysis



26 - 1

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

■ Domain

■ Direction

■ Transfer function

■ Meet operator

■ Boundary condition

■ Initial values



26 - 2

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

■ Domain

■ Direction

■ Transfer function

■ Meet operator

■ Boundary condition

■ Initial values

■ Non-trivial expressions

■ Forward

■ AEexit(s) =

(AEentry \ kill(s)) ∪ gen(s)

■ Intersection (∩)

■ AEentry(entryNode) = ∅

■ ∅
Example: Available expressions



27

Outline

■ First example: Available expressions

■ Basic principles

■ More examples

■ Solving data flow problems

■ Inter-procedural analysis

■ Sensitivities



28

Data Flow Analyses

■ Seen previously

□ Available expressions

■ Next

□ Reaching definitions

□ Very busy expressions

□ Live variables



29

Reaching Definitions Analysis

Goal: For each program point, compute
which assignments may have been made
and may not have been overwritten

■ Useful in various program analyses

■ E.g., to compute a data flow graph



30 - 1

Example

var x = 5;
var y = 1;
while (x > 1) {
y = x * y;
x = x - 1;

}



30 - 2

Example

var x = 5;
var y = 1;
while (x > 1) {
y = x * y;
x = x - 1;

}

Definition
reaches entry
of this
statement



30 - 3

Example

var x = 5;
var y = 1;
while (x > 1) {
y = x * y;
x = x - 1;

}

All definitions
reach the entry
of this statement



30 - 4

Example

var x = 5;
var y = 1;
while (x > 1) {
y = x * y;
x = x - 1;

}

Three definitions
reach entry of this
statement



31

Defining the Analysis

■ Domain: Definitions (assignments) in
the code

□ Set of pairs (v, s) of variables and statements

□ (v, s) means a definition of v at s

■ Direction: Forward

■ Meet operator: Union

□ Because we care about definitions that may

reach a program point



32

Defining the Analysis (2)

■ Transfer function:
RDexit(s) = (RDentry(s) \ kill(s)) ∪ gen(S)

■ Function gen(s)

□ If s is assignment to v: (v, s)

□ Otherwise: Empty set

■ Function kill(s)

□ If s is assignment to v: (v, s′) for all s′ that define v

□ Otherwise: Empty set



33

Defining the Analysis (3)

■ Boundary condition: Entry node starts
with all variables undefined

□ Special ”statement” for undefined variables: ?

□ RDentry(entryNode) = {(v, ?) | v ∈ V ars}

■ Initially, all nodes have no reaching
definitions



43



44



45


