Program Analysis
 Data Flow Analysis (Part 2)

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart Winter 2023/2024

Warm-up Quiz

What does this Python code print?

```
one = all([])
two = all([[]])
three = all([[[]]])
```

print(f"\{one\}, \{two\}, \{three\}")

Warm-up Quiz

What does this Python code print?

```
one = all([])
two = all([[]])
three = all([[[]]])
```

print(f"\{one\}, \{two\}, \{three\}")

Answer: True, False, True

Warm-up Quiz

What does this Python code print?

Answer: True, False, True

Warm-up Quiz

What does this Python code print?

Answer: True, False, True

Warm-up Quiz

What does this Python code print?

Answer: True, False, True

Warm-up Quiz

What does this Python code print?

Answer: True, False, True

Example

```
\(\operatorname{var} \mathrm{x}=\mathrm{a}+\mathrm{b} ;\)
\(\operatorname{var} y=a * b ;\)
while ( \(\mathrm{y}>\mathrm{a}+\mathrm{b}\) ) \{
    \(a=a-1 ;\)
    \(\mathbf{x}=a+b ;\)
\}
```

Control flow graph

$$
\begin{aligned}
& \frac{1}{\sum^{x=a+b}}{ }^{1} \\
& \frac{1}{y=a * b b^{2}} \\
& \frac{1}{y>a+b}{ }^{3} \\
& \frac{1}{a=a-1} \\
& \frac{1}{\mid x=a+b}
\end{aligned}
$$

$\frac{\text { Non-tricial expressions: }}{a+b}$
$a * b$
$a-1$
Tromifer function for each statement

Statements	$\operatorname{gen}(s)$	$($ kill (s)
1	$\{a+b\}$	\varnothing
2	$\{a * b\}$	\varnothing
3	$\{a+b\}$	\varnothing
4	\varnothing	$\{a-1, a+b, a \times b\}$
5	$\{a+b\}$	\varnothing

Propagating Available Expressions

- Initially, no available expressions
- Forward analysis: Propagate available expressions in the direction of control flow
- For each statement s, outgoing available expressions are: incoming avail. exprs. minus kill(s) plus gen(s)
- When control flow splits, propagate available expressions both ways
- When control flows merge, intersect the incoming available expressions

Data flow equations
AE entry (s) ... avail. oxpr. at entry of s $A E_{\text {exit }}(s)$... avail expo. at exit of s

$$
\begin{aligned}
& A E_{\text {entry }}(1)=\neq \\
& A E_{\text {entry }}(2)=A E_{\text {exit }}(1) \\
& A E_{\text {entry }}(3)=A E_{\text {exit }}(2) \wedge A E_{\text {exit }}(5) \\
& A E_{\text {entry }}(4)=A E_{\text {exit }}(3) \\
& A E_{\text {entry }}(5)=A E_{\text {exit }}(4) \\
& A E_{\text {exit }}(1)=A E_{\text {intr }}(1) \cup\{a+b\}
\end{aligned}
$$

$$
\begin{aligned}
& A t_{\text {int }}(1)=A E_{\text {int }}(2) \cup\{a * b\} \\
& A E_{\text {init }}(2)=\{a+b\}
\end{aligned}
$$

$$
A E_{\text {exit }}(3)=A E_{\text {entry }}(3) \cup\{a+b\}
$$

$$
A E_{\text {exit }}(5)=A E_{\text {exit }}(4)=A E_{\text {entry }}(4) \backslash\{a+b, a * b, a-1\}
$$

$$
A E_{\text {cist }}(5)=A E_{\text {entry }}(5) \cup\{a+b\}
$$

Solution of these equations:

s	$A E_{\text {entity }}(s)$	$A E_{\text {exit }}(s)$
1	σ	$\{a+b\}$
2	$\{a+b\}$	$\{a+b, a * b\}$
3	$\{a+b\}$	$\{a+b\}$
4	$\{a+b\}$	\varnothing
5	\varnothing	$\{a+b\}$

Quiz

```
var m = x - y;
if (random()) {
        while (m > 0) {
            x = y + 1;
        }
} else {
        n = x - y;
        }
    z = x - y;
```


Quiz

$$
\begin{aligned}
& \text { var } m=x-y ; \\
& \text { if }(\operatorname{random}())\{ \\
& \text { while }(\mathrm{m}>0)\{ \\
& \mathrm{x}=\mathrm{y}+1 ;
\end{aligned}
$$

Quiz

$$
\begin{aligned}
& \operatorname{var} m=x-y ; \\
& \text { if (random()) \{ } \\
& \text { while (} \mathrm{m}>0 \text {) \{ } \\
& \mathrm{x}=\mathrm{y}+1 \text {; } \\
& \text { \} } \\
& \text { \} else \{ } \\
& \mathrm{n}=\mathrm{x}-\mathrm{y} ; \\
& \begin{array}{ll}
\} & \text { Is } x-y \text { an available } \\
z=x-y ; & \text { expression when entering }
\end{array} \\
& \text { this statement? }
\end{aligned}
$$

Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

- Domain
- Direction
- Transfer function
- Meet operator
- Boundary condition
- Initial values

Domain

- Analysis associates some information with every program point
\square "Information" means elements of a set
- Domain of the analysis: All possible elements the set may have
\square E.g., for available expressions analysis:
Domain is set of non-trivial expressions

Direction

- Analysis propagates information along the control flow graph
\square Forward analysis: Normal flow of control
\square Backward analysis: Invert all edges
- Reasons about executions in reverse
- E.g., available expression analysis:

Forward

Transfer Function

- Defines how a statement affects the propagated information
- $D F_{\text {exit }}(s)=$ some function of $D F_{\text {entry }}(s)$
- E.g., for available expression analysis:
$A E_{\text {exit }}(s)=\left(A E_{\text {entry }}(s) \backslash k i l l(s)\right) \cup g e n(s)$

Meet Operator

- What if two statements s_{1}, s_{2} flow to a statement s ?
- Forward analysis: Execution branches merge
\square Backward analysis: Branching point
- Meet operator defines how to combine the incoming information
\square Union: $D F_{\text {entry }}(s)=D F_{\text {exit }}\left(s_{1}\right) \cup D F_{\text {exit }}\left(s_{2}\right)$
\square Intersection: $D F_{\text {entry }}(s)=D F_{\text {exit }}\left(s_{1}\right) \cap D F_{\text {exit }}\left(s_{2}\right)$

Meet Operator

- What if two statements s_{1}, s_{2} flow to a statement s ?
- Forward analysis: Execution branches merge
- Backward analysis: Branching point
- Meet operator defines how to combine the incoming information
\square Union: $D F_{\text {entry }}(s)=D F_{\text {exit }}\left(s_{1}\right) \cup D F_{\text {exit }}\left(s_{2}\right)$
$\rightarrow \square$ Intersection: $D F_{\text {entry }}(s)=D F_{\text {exit }}\left(s_{1}\right) \cap D F_{\text {exit }}\left(s_{2}\right)$
E.g., available expressions analysis

Boundary Condition

- What information to start with at the first CFG node?
\square Forward analysis: First node is entry node
\square Backward analysis: First node is exit node
- Common choices
\square Empty set
\square Entire domain

Boundary Condition

- What information to start with at the first CFG node?
\square Forward analysis: First node is entry node
\square Backward analysis: First node is exit node
- Common choices
\square Empty set
\square Entire domain
E.g., available expressions analysis

Initial Values

. What is the information to start with at intermediate nodes?

- Common choices
\square Empty set
- Entire domain

Initial Values

- What is the information to start with at intermediate nodes?
- Common choices
\square Empty set
\square Entire domain
E.g., available expressions analysis

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

- Domain
- Direction
- Transfer function
- Meet operator
- Boundary condition
- Initial values

Defining a Data Flow Analysis

Any data flow analysis: Defined by six properties

- Domain
- Direction
- Transfer function
- Meet operator
- Boundary condition - $A E_{\text {entry }}($ entry Node $)=\emptyset$
- Initial values
- Non-trivial expressions
- Forward
- $A E_{\text {exit }}(s)=$ $\left(A E_{\text {entry }} \backslash \operatorname{kill}(s)\right) \cup g e n(s)$
- Intersection (\cap)
- \emptyset

Example: Available expressions ${ }^{26-2}$

Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities

Data Flow Analyses

- Seen previously
\square Available expressions
- Next
\square Reaching definitions
\square Very busy expressions
\square Live variables

Reaching Definitions Analysis

Goal: For each program point, compute which assignments may have been made and may not have been overwritten

- Useful in various program analyses
- E.g., to compute a data flow graph

Example

```
var \(\mathrm{x}=5\);
var \(y=1\);
while ( \(x\) > 1) \{
    \(\mathrm{y}=\mathrm{x} * \mathrm{y} ;\)
    \(\mathbf{x}=\mathbf{x}-1\);
\}
```


Example

$\operatorname{var} x=5 ;$
$\operatorname{var} y=1 ;$
while (x > 1) \{
$\mathrm{y}=\mathrm{x}$ * y ;
$\mathbf{x}=\mathbf{x}-1$;
\}

Definition reaches entry of this
 statement

Example

Example

Defining the Analysis

- Domain: Definitions (assignments) in the code
- Set of pairs (v, s) of variables and statements
$\square(v, s)$ means a definition of v at s
- Direction: Forward
- Meet operator: Union
- Because we care about definitions that may reach a program point

Defining the Analysis (2)

- Transfer function:
$R D_{\text {exit }}(s)=\left(R D_{\text {entry }}(s) \backslash \operatorname{kill}(s)\right) \cup \operatorname{gen}(S)$
- Function $\operatorname{gen}(s)$
\square If s is assignment to $v:(v, s)$
\square Otherwise: Empty set
- Function $\operatorname{kill}(s)$
\square If s is assignment to $v:\left(v, s^{\prime}\right)$ for all s^{\prime} that define v
\square Otherwise: Empty set

Defining the Analysis (3)

- Boundary condition: Entry node starts with all variables undefined
- Special "statement" for undefined variables: ?
$\square R D_{\text {entry }}($ entryNode $)=\{(v, ?) \mid v \in$ Vars $\}$
- Initially, all nodes have no reaching definitions

Example: Reaching Definitions

s	$\operatorname{sen}(s)$	kill $1 s)$
1	$\{(x, 1)\}$	$\{(x, 1),(x, 5),(x, 2)\}$
2	$\{(y, 2)\}$	$\{(y, 2),(y, 4),(y, ?)\}$
3	\varnothing	\varnothing
4	$\{(y, 4)\}$	$\{(y, 2),(y, 4),(y, 2)\}$
5	$\{(x, 5)\}$	$\{(x, 1),(x, 5),(x, ?)\}$

Data Flow Equations
$R D_{\text {entry }}(1)=\{(x, ?),(y, ?)\}$
$R D_{\text {entry }}(2)=R D_{\text {exit }}(1)$
$R D_{\text {entry }}(3)=R D_{\text {exit }}(2) \cup R D_{\text {exit }}(5)$
$R D$ entry $(4)=R D$ exit (3)
$R D_{\text {entry }}(5)=R D_{\text {exit }}(4)$
$Z D_{\text {exit }}(1)=\left(R D_{\text {entry }}(1) \backslash\{(x, 1),(x, 5),(x, ?)\}\right) \cup\{(x, 1)\}$
$R D_{\text {exit }}(2)=\left(R D_{\text {entry }}(2) \backslash\{(y, 2),(y, 4),(y, ?)\}\right) \cup\{(y, 2)\}$
$R D_{\text {exit }}(3)=R D_{\text {entry }}(3)$
$\left.R D_{\text {exit }}(4)=\left(R D_{\text {entry }}(4) \backslash\{(y, 2),(y, 4),(y, ?)\}\right) \cup\{y, 4)\right\}$
$R D_{\text {est }}(5)=\left(R D_{\text {entity }}(5) \backslash\{(x, 1),(x, 5),(x, ?) \cdot\}\right) \cup\{(x, 5)\}$

Solution

s	$R D_{\text {entry }}$	$R D_{\text {exit }}$
1	$\{(x, ?),(y, ?)\}$	$\{(x, 1),(y, ?)\}$
2	$\{(x, 1),(y, ?)\}$	$\{(x, 1),(y, 2)\}$
3	$\{(x, 1),(x, 5), 4)\}$	$\{(x, 1),(x, 5),(y, 2),(y, 4)\}$
4	$(y, 2),(y, 4)\}$	$\{(x, 1),(x, 5),(y, 4)\}$
5	$\{(x, 1),(x, 5)$,	$\{(y, 4),(x, 5)\}$
$(y, 4)\}$		

