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Warm-up Quiz

What does this Python code print?

one = all([])
two = all([[]])
three = all([[[11])

print (f" {one}, {two}, {three}")
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Warm-up Quiz

What does this Python code print?

one = all([])
two = all([[]])
three = all([[[]1]1])

print (f" {one}, {two}, {three}")

Answer: True, False, True

12 -



Warm-up Quiz

What does this Python code print?

Returns True except if
one =la .
two = (1) any element of the iterable

three =|a11frrryyy) €valuates to False

print (f" {one}, {two}, {three}")

Answer: True, False, True
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Warm-up Quiz

What does this Python code print?

Returns True except if
L) any element of the iterable

two =|allfll[]l])
three =|a11frrri7y \ evaluates to False

print (f" {one}, {two},| {three}")

Empty list = True

Answer: True, False, True
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Warm-up Quiz

What does this Python code print?

Returns True except if

:3: z :11 [111) any element of the iterable
three ={a11frrr111)\ €valuates to False

print (f" {one}, {two},/ {three}")

Inner, empty list evaluates
fo False = False

Answer: True, False, True
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Warm-up Quiz

What does this Python code print?

Returns True except if

:3: z :11 [111) any element of the iterable
three =|a11frrriyp . €valuates to False

print (f" {one}, {two},/ {three}")

Inner, non-empty list
evaluates to True = True

Answer: True, False, True
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Example

var x
var y

while (y > a + b) {

a
X

=a + b;
= a x b;

a-1;
a + b;
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Propagating Available Expressions

m Initially, no available expressions

m Forward analysis: Propagate available
expressions in the direction of control flow

m For each statement s, outgoing available
expressions are:
iIncoming avail. exprs. minus kill(s) plus gen(s)

m When control flow splits, propagate available
expressions both ways

s When control flows merge, intersect the incoming

available expressions .
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Quiz

var m = X — y;
if (random()) {
while (m > 0) {
x=y + 1,
}
} else {
n=x-=y
}
Z

=xX-Y;

17 -

1



Quiz

var m = X — y;
i1f (random()) {

while (m > 0) {

x=y + 1,

}
} else {

n=x-=y
} Is x - y an available

expression when entering

this statement?
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Quiz

var m = X — y;
1f (random()) {

while (m > 0) { No, because

} killsx - y
} else {

n=x-y;

} Is x — y an available

expression when entering

this statement?
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Outline

= First example: Available expressions
= Basic principles «——

= More examples

= Solving data flow problems

= Inter-procedural analysis

= Sensitivities
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Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
s Domain

m Direction

m [ransfer function

m Meet operator

m Boundary condition

m Initial values



Domain

= Analysis associates some information
with every program point

0 “Information” means elements of a set

= Domain of the analysis: All possible
elements the set may have

0 E.g., for available expressions analysis:

Domain is set of non-trivial expressions
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Direction

= Analysis propagates information
along the control flow graph

o Forward analysis: Normal flow of control
o Backward analysis: Invert all edges

« Reasons about executions in reverse

= E.g., available expression analysis:

Forward

21



Transfer Function

s Defines how a statement affects the
propagated information

s DF,.+(s) = some function of DF,,;,.,(s)

= E.g., for available expression analysis:
AFE.rit(S) = (AEentry(s) \ Kill(s)) U gen(s)
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Meet Operator

= What if two statements s, s, flow to a
statement s?

o Forward analysis: Execution branches merge
o Backward analysis: Branching point

= Meet operator defines how to combine
the incoming information

] UniOn: DFentry(S) — DFe:m't(Sl) U DFe:m't(SZ)

] |n’[erseC’[i0n: DFentry(S) = DFe:m't(Sl) M DFe:m't(SQ)
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Meet Operator

= What if two statements s, s, flow to a
statement s?

o Forward analysis: Execution branches merge
o Backward analysis: Branching point

= Meet operator defines how to combine
the incoming information

] UniOn: DFentry(S) — DFe:m't(Sl) U DFe:m't(SZ)

I_—> o Intersection: DF,,11y(8) = DF.pis(51) N DF oyt (82)
E.g., available expressions analysis 23 -



Boundary Condition

= What information to start with at the first
CFG node?

0 Forward analysis: First node is entry node

o Backward analysis: First node is exit node
= Common choices

0 Empty set

0 Entire domain

24 -
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Boundary Condition

= What information to start with at the first
CFG node?

0 Forward analysis: First node is entry node

o Backward analysis: First node is exit node
= Common choices

0 Empty set

0 Entire domain
E.g., available expressions analysis
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Initial Values

= What is the information to start with at
intermediate nodes?

s Common choices
0 Empty set

0 Entire domain
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Initial Values

= What is the information to start with at
intermediate nodes?

s Common choices
0 Empty set

0 Entire domain

E.g., available expressions analysis
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Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
m Domain

m Direction
m [ransfer function

m Meet operator
m Boundary condition

m Initial values



Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
s Domain m Non-trivial expressions

m Direction m Forward
s Transfer function — ® AFE .i(s) =

(AEcniry \ Kill(s)) U gen(s)
s Meet operator m Intersection (N)
» Boundary condition ® AFE.,,(entryNode) = ()

s Initial values m
Example: Available expressions “° -~



Outline

= First example: Available expressions
= Basic principles

= More examples «——

= Solving data flow problems

= Inter-procedural analysis

= Sensitivities
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Data Flow Analyses

= Seen previously

o Available expressions
= Next

o Reaching definitions

o Very busy expressions

0 Live variables

28



Reaching Definitions Analysis

Goal: For each program point, compute
which assignments may have been made
and may not have been overwritten

m Useful in various program analyses

m E.g., to compute a data flow graph
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Example

var x
var y =
while (x > 1) {
Y=X*xY,
x-1;
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Example

var
var y = 1,

while (x > 1)

}

y
X

4

X *Yy,
x-1;

)

Definition
reaches entry
of this
statement
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Example

var |x[= 5;

=X *Y;

var ly|=1;
while (x > 1) {

All definitions
reach the entry
of this statement
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Example

var |x|=5;
var y = 1;
while (x > 1) {

Y[= X *Y;
x-1;

Three definitions
reach entry of this
statement
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Defining the Analysis

= Domain: Definitions (assighments) in
the code

0 Set of pairs (v, s) of variables and statements
1 (v, s) means a definition of v at s

= Direction: Forward

= Meet operator: Union

1 Because we care about definitions that may
reach a program point
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Defining the Analysis (2)

= [ransfer function:
RD¢yit(8) = (RDentry(s) \ Kill(s)) U gen(S)

s Function gen(s)
0 If s is assignment to v: (v, s)
1 Otherwise: Empty set
s Function £:li(s)
0 If s is assignment to v: (v, s’) for all s’ that define v

0 Otherwise: Empty set
32



Defining the Analysis (3)

= Boundary condition: Entry node starts
with all variables undefined

0 Special statement” for undefined variables: ?
0 RDepiry(entryNode) = {(v,?) | v € Vars}

= Initially, all nodes have no reaching
definitions

33
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