Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024
11




Warm-up Quiz

What does this Python code print?

one = all([])
two = all([[]])
three = all([[[11])

print (f" {one}, {two}, {three}")

12 -

1



Warm-up Quiz

What does this Python code print?

one = all([])
two = all([[]])
three = all([[[]1]1])

print (f" {one}, {two}, {three}")

Answer: True, False, True

12 -



Warm-up Quiz

What does this Python code print?

Returns True except if
one =la .
two = (1) any element of the iterable

three =|a11frrryyy) €valuates to False

print (f" {one}, {two}, {three}")

Answer: True, False, True

12 -



Warm-up Quiz

What does this Python code print?

Returns True except if
L) any element of the iterable

two =|allfll[]l])
three =|a11frrri7y \ evaluates to False

print (f" {one}, {two},| {three}")

Empty list = True

Answer: True, False, True

12 -



Warm-up Quiz

What does this Python code print?

Returns True except if

:3: z :11 [111) any element of the iterable
three ={a11frrr111)\ €valuates to False

print (f" {one}, {two},/ {three}")

Inner, empty list evaluates
fo False = False

Answer: True, False, True

12 -



Warm-up Quiz

What does this Python code print?

Returns True except if

:3: z :11 [111) any element of the iterable
three =|a11frrriyp . €valuates to False

print (f" {one}, {two},/ {three}")

Inner, non-empty list
evaluates to True = True

Answer: True, False, True

12 -



Example

var x
var y

while (y > a + b) {

a
X

=a + b;
= a x b;

a-1;
a + b;

13



N 4l
;x/alrg

L f
\ = 9‘5 -

Nov\ "‘T\'\fw\‘ exNpt e O o

o+ b

& * b
a -1

41

'\wm_g(r %V\wck""‘ 40’ eachy chade et

Slarennt s | 3_3(5) [l (s)
o fors$ = -
Z 2&*‘05 2/
3 fa-\'l: =
4 z % — 7\ 0&-5 o X 53
< Eu%bs p’
R



Propagating Available Expressions

m Initially, no available expressions

m Forward analysis: Propagate available
expressions in the direction of control flow

m For each statement s, outgoing available
expressions are:
iIncoming avail. exprs. minus kill(s) plus gen(s)

m When control flow splits, propagate available
expressions both ways

s When control flows merge, intersect the incoming

available expressions .



Data ﬂow YRS NIV
}AVE&(MMB (g\ o 0\\/9,\‘(‘ okrr, p:" -lv\‘k) ‘4 s
A Ekk{fr (S\ - Q\/au\'( 1§70r, A+ e)(;’[' d,/,j

AEMV\) (2) = £

A€ady () = Afack (1)

AE iy (B) = At (2) N AE b (S)
AE ity (4) = Atiw (3)

AC iy (8) = AEL (4)

AE ok (1) = AE.ag (1) UV {0\+5§
AE ok Q‘Z) = AE aky (2) U {o\-)‘zbi
AC o () = At (3) Y § a+b

- K‘S -
Aglk:'\' (u\ —_ /AK]CJKV\“L‘\') <Lf) \ ?“*bv O S

AT or (8) = Ak ) u §a+5§

Colu Ko, && Hese
— J%AAWFOMS d

< AEWA“) (S) 7‘\{064 (g)
4 z fou-bj
Z {ou\'bB %A-\-b'a* L;
S % O\—\—BS %Q+5§
R &
> \ % Zau‘- 'oj

42



Quiz

var m = X — y;
if (random()) {
while (m > 0) {
x=y + 1,
}
} else {
n=x-=y
}
Z

=xX-Y;

17 -

1



Quiz

var m = X — y;
i1f (random()) {

while (m > 0) {

x=y + 1,

}
} else {

n=x-=y
} Is x - y an available

expression when entering

this statement?

17 -



Quiz

var m = X — y;
1f (random()) {

while (m > 0) { No, because

} killsx - y
} else {

n=x-y;

} Is x — y an available

expression when entering

this statement?

17 -



Outline

= First example: Available expressions
= Basic principles «——

= More examples

= Solving data flow problems

= Inter-procedural analysis

= Sensitivities

18



Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
s Domain

m Direction

m [ransfer function

m Meet operator

m Boundary condition

m Initial values



Domain

= Analysis associates some information
with every program point

0 “Information” means elements of a set

= Domain of the analysis: All possible
elements the set may have

0 E.g., for available expressions analysis:

Domain is set of non-trivial expressions

20



Direction

= Analysis propagates information
along the control flow graph

o Forward analysis: Normal flow of control
o Backward analysis: Invert all edges

« Reasons about executions in reverse

= E.g., available expression analysis:

Forward

21



Transfer Function

s Defines how a statement affects the
propagated information

s DF,.+(s) = some function of DF,,;,.,(s)

= E.g., for available expression analysis:
AFE.rit(S) = (AEentry(s) \ Kill(s)) U gen(s)

22



Meet Operator

= What if two statements s, s, flow to a
statement s?

o Forward analysis: Execution branches merge
o Backward analysis: Branching point

= Meet operator defines how to combine
the incoming information

] UniOn: DFentry(S) — DFe:m't(Sl) U DFe:m't(SZ)

] |n’[erseC’[i0n: DFentry(S) = DFe:m't(Sl) M DFe:m't(SQ)

23 -

1



Meet Operator

= What if two statements s, s, flow to a
statement s?

o Forward analysis: Execution branches merge
o Backward analysis: Branching point

= Meet operator defines how to combine
the incoming information

] UniOn: DFentry(S) — DFe:m't(Sl) U DFe:m't(SZ)

I_—> o Intersection: DF,,11y(8) = DF.pis(51) N DF oyt (82)
E.g., available expressions analysis 23 -



Boundary Condition

= What information to start with at the first
CFG node?

0 Forward analysis: First node is entry node

o Backward analysis: First node is exit node
= Common choices

0 Empty set

0 Entire domain

24 -

1



Boundary Condition

= What information to start with at the first
CFG node?

0 Forward analysis: First node is entry node

o Backward analysis: First node is exit node
= Common choices

0 Empty set

0 Entire domain
E.g., available expressions analysis

24 -



Initial Values

= What is the information to start with at
intermediate nodes?

s Common choices
0 Empty set

0 Entire domain

25 -

1



Initial Values

= What is the information to start with at
intermediate nodes?

s Common choices
0 Empty set

0 Entire domain

E.g., available expressions analysis

25 -



Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
m Domain

m Direction
m [ransfer function

m Meet operator
m Boundary condition

m Initial values



Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
s Domain m Non-trivial expressions

m Direction m Forward
s Transfer function — ® AFE .i(s) =

(AEcniry \ Kill(s)) U gen(s)
s Meet operator m Intersection (N)
» Boundary condition ® AFE.,,(entryNode) = ()

s Initial values m
Example: Available expressions “° -~



Outline

= First example: Available expressions
= Basic principles

= More examples «——

= Solving data flow problems

= Inter-procedural analysis

= Sensitivities

27



Data Flow Analyses

= Seen previously

o Available expressions
= Next

o Reaching definitions

o Very busy expressions

0 Live variables

28



Reaching Definitions Analysis

Goal: For each program point, compute
which assignments may have been made
and may not have been overwritten

m Useful in various program analyses

m E.g., to compute a data flow graph

29



Example

var x
var y =
while (x > 1) {
Y=X*xY,
x-1;

=

"
Il



Example

var
var y = 1,

while (x > 1)

}

y
X

4

X *Yy,
x-1;

)

Definition
reaches entry
of this
statement

30 -



Example

var |x[= 5;

=X *Y;

var ly|=1;
while (x > 1) {

All definitions
reach the entry
of this statement

30 -



Example

var |x|=5;
var y = 1;
while (x > 1) {

Y[= X *Y;
x-1;

Three definitions
reach entry of this
statement

30 -



Defining the Analysis

= Domain: Definitions (assighments) in
the code

0 Set of pairs (v, s) of variables and statements
1 (v, s) means a definition of v at s

= Direction: Forward

= Meet operator: Union

1 Because we care about definitions that may
reach a program point

31



Defining the Analysis (2)

= [ransfer function:
RD¢yit(8) = (RDentry(s) \ Kill(s)) U gen(S)

s Function gen(s)
0 If s is assignment to v: (v, s)
1 Otherwise: Empty set
s Function £:li(s)
0 If s is assignment to v: (v, s’) for all s’ that define v

0 Otherwise: Empty set
32



Defining the Analysis (3)

= Boundary condition: Entry node starts
with all variables undefined

0 Special statement” for undefined variables: ?
0 RDepiry(entryNode) = {(v,?) | v € Vars}

= Initially, all nodes have no reaching
definitions

33



gXQw\Pu “ Rla\ol/\\'

ba_sv‘\nt‘\'\'ouj

L’gv«\) ﬁ

43

‘\QV‘(S\ RN (s)

VT + W NN A

Z/v(x‘ 4>§ ?(X’431(X1§),(x,?\§
B TRAN T A CT A R SV PR CRR DR

7 & o
()] f(g2) () [y
{ 3,c)] ), G s S



44

:EDL“*D (") = %(x‘?), (3) 2\5
2D by (2)= FDent (1)
B s (2) = BDewt (2) U SDek

9
%ZB @v\&b (4\ = KDO({Jr(%))
B anbyg () = RYD o (M

3 —
LD et (/l\ = (thw%\) (4) \ %(X\/”\(") 3), (X\ g)g> v ?(x\’l\}
En e (2) = (BDuag () A ECRARREY 1), (5.0 o ;(j‘az
Dot (§> = RB(\AA‘\) (S)

f [y, 2 U iy )

2D (L"\ :(Rb*\n*\)(\*)\%(5[1\\(\3‘4\ p )\g> é\\j\ 3

gowr () = (Rdaay 8) \3 O T B CTR AT S IVE A POr 5

($)



go(vL\o\,,

S (R‘B,U,Av\) ‘Rﬁu_\,

/' ?(\C\ 2)‘ (3\?)3 %(k\/\\’ (3‘ ?)A

> | ) NF )y (5 2)

§ (k.00 (08, Ce 1) (s

g ‘l\r (3 \3 (4.2) ! )

Lr \3‘.\ é()ﬁ’!),(y‘f)‘[b L')S
S %(X/‘\ (Y 5'\ g(‘yl‘f), (K,f);

45



