Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024
1




Big Picture

= Static versus dynamic analysis

= Many ways of formulating and
implementing analyses

= One popular way of formulating a
static analysis: Data flow analysis



Real-World Use Cases

Many IDE features are based on data
flow analysis

O Eg
o Reaching definitions

0 Unused variables



Data Flow Analysis

Basic idea
m Propagate analysis information along the edges
of a control flow graph

m Goal: Compute analysis state at each program
point

m For each statement, define how it affects the
analysis state

m For loops: lterate until fix-point reached



Outline

= First example: Available expressions «—
= Basic principles

= More examples

= Solving data flow problems

= Inter-procedural analysis

= Sensitivities



Available Expression Analysis

Goal: For each program point, compute
which expressions must have already
been computed, and not later modified

m Useful, e.qg., to avoid re-computing an expression

m Used as part of compiler optimizations



Example

var x
var y

while (y > a + b) {

a
X

=a + b;
= a x b;

a-1;
a + b;

- 1



Example

var x
var y

while (y >[a + ) {

a
X

= a + b;
= a x b;

a-1;
a + b;

—

Available every time
execution reaches
this point



Transfer Functions

s Transfer function of a statement:
How the statement affects the analysis
state

1 Here: Analysis state = available expressions
= Two functions

o gen: Available expressions generated by a
statement

o Kill: Available expressions killed by a statement



gen Function

Function gen : Stmt — P(Expr)

m A statement generates an available expressions e
If
0 It evaluates e and

0 It does not later write any variable used in e

m Otherwise, function returns empty set

Example:
var x = a * b; generatesa x b



kill Function

Function k:ll : Stmt — P(Expr)

m A statement kills an available expressions e if
0 It modifies any of the variables used in e

m Otherwise, function returns empty set

Example:
a = 23; killsa * b

10



Example

var x
var y

while (y > a + b) {

a
X

=a + b;
= a x b;

a-1;
a + b;

11



N 4l
;x/alrg

L f
\ = 9‘5 -

Nov\ "‘T\'\fw\‘ exNpt e O o

o+ b

& * b
a -1

41

'\wm_g(r %V\wck""‘ 40’ eachy chade et

Slarennt s | 3_3(5) [l (s)
o fors$ = -
Z 2&*‘05 2/
3 fa-\'l: =
4 z % — 7\ 0&-5 o X 53
< Eu%bs p’
R



Propagating Available Expressions

m Initially, no available expressions

m Forward analysis: Propagate available
expressions in the direction of control flow

m For each statement s, outgoing available
expressions are:
iIncoming avail. exprs. minus kill(s) plus gen(s)

m When control flow splits, propagate available
expressions both ways

s When control flows merge, intersect the incoming

available expressions .



