Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart

Winter 2023/2024
Slides adapted from Eric Boddenr

Warm-up Quiz

What does this Java code print?

class Reflection {
static class Car {
private String color;
protected void getColor() {
System.out.println("A "+colort+" car'");

}
}
public static void main(String[] args)
throws Exception {
Class clazz = Class.forName ("ReflectionS$Car") ;
Car car = (Car) clazz.newInstance();
Method getColor = clazz.getDeclaredMethod("getColor") ;
getColor.invoke (car) ;

- 1

Warm-up Quiz

What does this Java code print?

class Reflection {
static class Car {
private String color;
protected void getColor() {
System.out.println("A "+colort+" car'");

}
}
public static void main(String[] args)
throws Exception {
Class clazz = Class.forName ("ReflectionS$Car") ;
Car car = (Car) clazz.newInstance();
Method getColor = clazz.getDeclaredMethod("getColor") ;
getColor.invoke (car) ;

}
} Result: A null car

Call Graph Analysis

= Call graph: Abstraction of all method
calls in a program

1 Nodes: Methods

0 Edges: Calls

0 Flow-insensitive: No execution order
= Here: Static call graph

o Abstract of all calls that may execute

Example

public class Main implements Observer ({
public static void main(String[] args) {
Main m = new Main() ;
Subject s = new Subject();
s .addObserver (m) ;
s.modify() ;

}

public void update (Cbservable o, Object arg) {
System.out .println(ot+" notified me!");
}

static class Subject extends Observable
public void modify () {
setChanged() ;
notifyObservers() ;

}

Olbsecvable . vaC/‘muszJ

O\/\'V\.vf)Olm‘L(< _ _ - /@o\k\&.\mﬂ;%g@

97

Problem: Polymorphic Calls

import java.util. x;

public class Main {
public static void main(String[] args) {
Collection ¢ = makeCollection(args[0]);
c.add("hello") ;

}

static Collection makeCollection(String s) {
if(s.equals('"list")) {
return new ArraylList();
} else {
return new HashSet () ;

}
}
}

T

@m)t;} M®

98

(\'Q)ﬁ
S
2=

P 4 NAN
Q \/ \‘3
/\%

Improving the Call Graph

s Prune graph:
Focus on feasible behavior

= Want to minimize
0 Reachable methods
0 Call edges

o Potentially polymorphic call sites

100

{V\’\V\D
é \j {>0§W¥S
<£L><K / \>< 3
¢ dae
(9., possilo P%wa.o P"“L 2D renchable @ wnrt ack-able — 468
PLMU L?\‘FL e Yood Hat o e

OV ©

Overview

= Introduction
= Simple & efficient: CHA, RTA €+—
= Analyzing assignments: VTA, DTA

= Call graphs and points-to analysis:
Spark

11

Five Algorithms

= Many algorithms for call graph
construction

0 Class hierarchy analysis (CHA)
o Rapid type analysis (RTA)

o Variable type analysis (VTA)

o Declared type analysis (DTA)

o General construction framework: Spark

12

Class Hierarchy Analysis (CHA)

= Most simple analysis

= For a polymorphic call sitem () on
declared type T:
Call edge to T.m and any subclass of T
that implements m

13

Hacly Set . o\a\o\

101

Class Hierarchy Analysis (CHA)

s Pros
0 Very simple

0 Correct: Contains edges for all calls that the

program may execute

o Few requirements: Needs only hierarchy, no
other analysis information

= Cons

0 Very imprecise: Most edges will never be
executed

15

Rapid Type Analysis (RTA)

= Like CHA, but:
Take into account only those types
that the program actually instantiates

16

Problem: Polymorphic Calls

import java.util. x;

public class Main {
public static void main(String[] args) {
Collection ¢ = makeCollection(args[0]);
c.add("hello") ;

}

static Collection makeCollection(String s) {
if(s.equals('"list")) {
return new ArraylList();
} else {
return new HashSet () ;

}
}
}

17

Problem: Polymorphic Calls

import java.util. x;

public class Main {
public static void main(String[] args) {
Collection ¢ = makeCollection(args[0]);
c.add("hello") ;
new LinkedList () ;

}

static Collection makeCollection(String s) {
if(s.equals("list")) {
return new ArrayList() ;
} else {
return new HashSet () ;

}
}
}

18

102

Rapid Type Analysis (RTA)

s Pros
o Still pretty fast: Complexity is O(| Program)|)

0 Correct
1 Much more precise than CHA:
Many unnecessary nodes and edges pruned
s Cons

0 Doesn’t reason about assignments

20

Overview

= Introduction
= Simple & efficient: CHA, RTA
= Analyzing assignments: VTA, DTA <

= Call graphs and points-to analysis:
Spark

21

Variable Type Analysis (VTA)

= Reason about assignments

= Infer what types the objects involved
in a call may have

= Prune calls that are infeasible based
on the inferred types

22

Example

a = new X();
b =a

0.£(b);

public class A {
public void £(C c¢) {
c.m();
}
}

public class B {
public void £(C c¢) {
c.m();
}
}

23

103

Type Propagation

Four steps:
m Form initial conservative call graph
0 E.g., using CHA or RTA
m Build type-propagation graph
m Collapse strongly connected components

m Propagate types in one iteration

25

Building Type Propagation Graph

s Assume statementa = b; isin
method C.m

| c.ma BR C.mb

s Assume another statementa.f = b;
where field £ is declared in A

- D

26

Example

A al, a2, a3; Bbl, b2, b3; C c;

al = new A();
a2 = new A();
a3 = new B();
bl = new B();
b2 = new B();
b3 = new B();
c = new C();
al = az2;

b3 = (B) a3;
a3 = b3;

a3 = al;

bl = b2;

bl = ¢;

27

O —p o —P >

_—
{AS“_—@{M

by Js¥— (L

T %, 3 B

(¢

£A, B]

0

~fams

104

Side Note: Field Representations

How does the analysis represent a. £?

m Field-sensitive: Represented as a. £
m Field-insensitive: Represented as a. = or a

m Field-based: Represented as 2. £, where A s
class of a

29 -

1

Side Note: Field Representations

How does the analysis represent a. £?

m Field-sensitive: Represented as a. £

m Field-insensitive: Represented as a. = or a

m| Field-based: Represented as 2. £, where A s
class of a

VTA is field-based

29 -

Variable Type Analysis (VTA)

s Pros

1 More precise than RTA: Considers only those
types that may actually reach the call site

0 Still relatively fast
= Cons
o Requires initial call graph (i.e., actually a
refinement algorithm)

0 Some imprecision remains, e.g., because of

field-based analysis
30

Declared-Type Analysis (DTA)

x ‘Small brother of VTA”

= Also reasons about assighments and
how they propagate types

= But: Not per variable, but per type

31

105

Declared-Type Analysis (DTA)

s Pros

0 Faster than VTA: Graph is smaller, propagation
IS faster

o More precise than RTA
= Cons

0 Less precise than VTA: Does not distinguish
variables of same type

33

Overview

= Introduction
= Simple & efficient: CHA, RTA
= Analyzing assignments: VTA, DTA

= Call graphs and points-to analysis: «—
Spark

34

Spark: Idea

s RTA, DTA, and VTA: Instances of one
single unifying framework

= General recipe
o First, built pointer-assignment graph (PAG)
0 Propagate information through graph

= Combine call graph construction with
points-to analysis

1 Reason about objects a variable may refer to

35

Pointer-Assignment Graph (PAG)

= Nodes

1 Allocation

0 Variable

o Field reference
= Edges

1 Allocation

o Assignment

o Field store
0 Field load

36 -

1

Pointer-Assignment Graph (PAG)

= Nodes = One for each new A()

o Allocation —— Represents a set of

o Variable objects
.g., A
« Edges type, .9
o Allocation

o Assignment

o Field store
0 Field load

36 -

Pointer-Assignment Graph (PAG)

= Nodes
1 Allocation
0 Variable ——»
o Field reference
= Edges
1 Allocation
o Assignment

o Field store
0 Field load

= One for each local
variable, parameter,
static field, and thrown
exception

= Represents a memory
location holding
pointers to objects

= May be typed (depends
on setting)

36 -

Pointer-Assignment Graph (PAG)

= Nodes s One foreachp. £

= Represents a pointer
0 Variable dereference

5 Field reference — = Has a variable node as

0 Allocation

= Edges its base, e.g.,p
| = Also models contents
- Allocation
of arrays:
o Field store

0 Field load o

36 -

Pointer-Assignment Graph (PAG)

= Nodes
1 Allocation
0 Variable
o Field reference
= Edges
o Allocation —»
o Assignment

o Field store
0 Field load

= Represents allocation
of an object assignhed
to a variable

=« E.g., for
p = new HashMap();
or

s="foo";

DO

36 -

Pointer-Assignment Graph (PAG)

s Nodes
= Represent

0 Allocation assignments among
o Variable variables and fields
- Field reference = E.g., for
Edges 1= by

= =d9 or -
o Allocation q.f

5 Assignment or o_.a
o Field store q=p.£
O -
-6

0 Field load

Example

static void foo() {
p = new A(); // allocy
q=p;
r = new B(); // allocs
p.f = r;
t = bar(q);
t.m();

}

static C bar(C s) {
return s.f;

}

37

Points-to Sets

= For each variable, set of objects the
variable may refer to

0 Objects represented as allocation nodes

= Example:

a =new X(); // alloci

a= new Y(); // allocs

pts(a) = {allocy, allocy }

39

Subset-based Analysis

s Allocation and assignment edges

iInduce subset constraints

1 Reason: Just because we know that
p = new A(); // allocl
does not mean that later we cannot see

= new B(); // alloc 2

m Example @_,o

induces constraint
{alloci} C pts(p)

40 -

1

Subset-based Analysis

s Allocation and assignment edges

iInduce subset constraints

1 Reason: Just because we know that
p = new A(); // allocl
does not mean that later we cannot see

= new B(); // alloc 2 Note: Analysis is

flow-insensitive,
O Example @—’0 i.e., values are
never assumed to
induces constraint be overwritten
{alloc, } C pts(p)

40 -

Computing Points-to Sets

= New helper node: Concrete fields

= Represents all objects pointed to by
field £ of all objects created at
allocation site

0 E.g., allocy. f

41

Computing Points-to Sets (2)

Iterative propagation algorithm

m Initialize pts(v) according to allocation edges
m Repeat until no changes
0 Propagate sets along assignment edges a — b
0 For each load edge a.f — b:
« For each c € pts(a), propagate pts(c.f) to pts(b)
0 For each store edge a — b.f:

» For each c € pts(b), propagate pts(a) to pts(c.f)

42

oM oc &~ /'au\koc}\
AL A
¢ 7 | v/
P l /. -
A
«~ 5 ¢ ¢t
|
;/ o‘\hc“.& ,(,

102

(dh £n() goes A2
2 w()

Simpler Variants

= Spark framework supports many
variants

o Just one allocation site per type

o Fields simply represented by their signature

o Equality instead of subsets for assignments

0 Etc.

44

Spark

s Pros

0 Generic algorithm where precision and
efficiency can be tuned

o Jointly computing call graph and points-to sets
Increases precision

= Cons
o Still flow-insensitive

o Can be quite expensive to compute

45

Overview

= Introduction
= Simple & efficient: CHA, RTA
= Analyzing assignments: VTA, DTA

= Call graphs and points-to analysis:
Spark

v

46

