
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2023/2024

Slides adapted from Eric Bodden

Program Analysis

Call Graphs



2 - 1

Warm-up Quiz

class Reflection {
static class Car {
private String color;
protected void getColor() {
System.out.println("A "+color+" car");

}
}
public static void main(String[] args)

throws Exception {
Class clazz = Class.forName("Reflection$Car");
Car car = (Car) clazz.newInstance();
Method getColor = clazz.getDeclaredMethod("getColor");
getColor.invoke(car);

}
}

What does this Java code print?



2 - 2

Warm-up Quiz

class Reflection {
static class Car {
private String color;
protected void getColor() {
System.out.println("A "+color+" car");

}
}
public static void main(String[] args)

throws Exception {
Class clazz = Class.forName("Reflection$Car");
Car car = (Car) clazz.newInstance();
Method getColor = clazz.getDeclaredMethod("getColor");
getColor.invoke(car);

}
} Result: A null car

What does this Java code print?



3

Call Graph Analysis

■ Call graph: Abstraction of all method
calls in a program

□ Nodes: Methods

□ Edges: Calls

□ Flow-insensitive: No execution order

■ Here: Static call graph

□ Abstract of all calls that may execute



4

Example
public class Main implements Observer {
public static void main(String[] args) {
Main m = new Main();
Subject s = new Subject();
s.addObserver(m);
s.modify();

}

public void update(Observable o, Object arg) {
System.out.println(o+" notified me!");

}

static class Subject extends Observable
public void modify() {
setChanged();
notifyObservers();

}
}



97



6

Problem: Polymorphic Calls
import java.util.*;

public class Main {
public static void main(String[] args) {
Collection c = makeCollection(args[0]);
c.add("hello");

}

static Collection makeCollection(String s) {
if(s.equals("list")) {
return new ArrayList();

} else {
return new HashSet();

}
}

}



98



99



9

Improving the Call Graph

■ Prune graph:
Focus on feasible behavior

■ Want to minimize

□ Reachable methods

□ Call edges

□ Potentially polymorphic call sites



100



11

Overview

■ Introduction

■ Simple & efficient: CHA, RTA

■ Analyzing assignments: VTA, DTA

■ Call graphs and points-to analysis:
Spark



12

Five Algorithms

■ Many algorithms for call graph
construction

□ Class hierarchy analysis (CHA)

□ Rapid type analysis (RTA)

□ Variable type analysis (VTA)

□ Declared type analysis (DTA)

□ General construction framework: Spark



13

Class Hierarchy Analysis (CHA)

■ Most simple analysis

■ For a polymorphic call site m() on
declared type T:
Call edge to T.m and any subclass of T
that implements m



101



15

Class Hierarchy Analysis (CHA)

■ Pros

□ Very simple

□ Correct: Contains edges for all calls that the

program may execute

□ Few requirements: Needs only hierarchy, no
other analysis information

■ Cons

□ Very imprecise: Most edges will never be

executed



16

Rapid Type Analysis (RTA)

■ Like CHA, but:
Take into account only those types
that the program actually instantiates



17

Problem: Polymorphic Calls
import java.util.*;

public class Main {
public static void main(String[] args) {
Collection c = makeCollection(args[0]);
c.add("hello");

}

static Collection makeCollection(String s) {
if(s.equals("list")) {
return new ArrayList();

} else {
return new HashSet();

}
}

}



18

Problem: Polymorphic Calls
import java.util.*;

public class Main {
public static void main(String[] args) {
Collection c = makeCollection(args[0]);
c.add("hello");
new LinkedList();

}

static Collection makeCollection(String s) {
if(s.equals("list")) {
return new ArrayList();

} else {
return new HashSet();

}
}

}



102



20

Rapid Type Analysis (RTA)

■ Pros

□ Still pretty fast: Complexity is O(|Program|)

□ Correct

□ Much more precise than CHA:

Many unnecessary nodes and edges pruned

■ Cons
□ Doesn’t reason about assignments



21

Overview

■ Introduction

■ Simple & efficient: CHA, RTA

■ Analyzing assignments: VTA, DTA

■ Call graphs and points-to analysis:
Spark



22

Variable Type Analysis (VTA)

■ Reason about assignments

■ Infer what types the objects involved
in a call may have

■ Prune calls that are infeasible based
on the inferred types



23

Example

a = new X();
...
b = a;
...
o.f(b);

public class A {
public void f(C c) {
c.m();

}
}

public class B {
public void f(C c) {
c.m();

}
}



103



25

Type Propagation

Four steps:

■ Form initial conservative call graph

□ E.g., using CHA or RTA

■ Build type-propagation graph

■ Collapse strongly connected components

■ Propagate types in one iteration



26

Building Type Propagation Graph

■ Assume statement a = b; is in
method C.m

■ Assume another statement a.f = b;

where field f is declared in A

C.m.a C.m.b

A.f C.m.b



27

Example

A a1, a2, a3; B b1, b2, b3; C c;

a1 = new A();
a2 = new A();
a3 = new B();
b1 = new B();
b2 = new B();
b3 = new B();
c = new C();

a1 = a2;
b3 = (B) a3;
a3 = b3;
a3 = a1;
b1 = b2;
b1 = c;



104



29 - 1

Side Note: Field Representations

How does the analysis represent a.f?

■ Field-sensitive: Represented as a.f

■ Field-insensitive: Represented as a.* or a

■ Field-based: Represented as A.f, where A is

class of a



29 - 2

Side Note: Field Representations

How does the analysis represent a.f?

■ Field-sensitive: Represented as a.f

■ Field-insensitive: Represented as a.* or a

■ Field-based: Represented as A.f, where A is

class of a

VTA is field-based



30

Variable Type Analysis (VTA)

■ Pros
□ More precise than RTA: Considers only those

types that may actually reach the call site

□ Still relatively fast

■ Cons
□ Requires initial call graph (i.e., actually a

refinement algorithm)

□ Some imprecision remains, e.g., because of

field-based analysis



31

Declared-Type Analysis (DTA)

■ “Small brother of VTA”

■ Also reasons about assignments and
how they propagate types

■ But: Not per variable, but per type



105



33

Declared-Type Analysis (DTA)

■ Pros

□ Faster than VTA: Graph is smaller, propagation

is faster

□ More precise than RTA

■ Cons

□ Less precise than VTA: Does not distinguish

variables of same type



34

Overview

■ Introduction

■ Simple & efficient: CHA, RTA

■ Analyzing assignments: VTA, DTA

■ Call graphs and points-to analysis:
Spark



35

Spark: Idea

■ RTA, DTA, and VTA: Instances of one
single unifying framework

■ General recipe

□ First, built pointer-assignment graph (PAG)

□ Propagate information through graph

■ Combine call graph construction with
points-to analysis

□ Reason about objects a variable may refer to



36 - 1

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load



36 - 2

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load

■ One for each new A()

■ Represents a set of
objects

■ Has an associated
type, e.g., A

alloc1



36 - 3

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load

■ One for each local
variable, parameter,
static field, and thrown
exception

■ Represents a memory
location holding
pointers to objects

■ May be typed (depends
on setting)

p



36 - 4

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load

■ One for each p.f

■ Represents a pointer
dereference

■ Has a variable node as
its base, e.g., p

■ Also models contents
of arrays:
a.<elements>

p.f



36 - 5

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load

■ Represents allocation
of an object assigned
to a variable

■ E.g., for
p = new HashMap();

or
s="foo";

alloc1 p



36 - 6

Pointer-Assignment Graph (PAG)

■ Nodes
□ Allocation

□ Variable

□ Field reference

■ Edges
□ Allocation

□ Assignment

□ Field store

□ Field load

■ Represent
assignments among
variables and fields

■ E.g., for
q = p;

or
q.f = p;

or
q = p.f;

p q

p q.f

p.f q



37

Example

static void foo() {
p = new A(); // alloc1
q = p;
r = new B(); // alloc2
p.f = r;
t = bar(q);
t.m();

}

static C bar(C s) {
return s.f;

}



39

Points-to Sets

■ For each variable, set of objects the
variable may refer to

□ Objects represented as allocation nodes

■ Example:
a = new X(); // alloc1
...
a = new Y(); // alloc2

pts(a) = {alloc1, alloc2}



40 - 1

Subset-based Analysis

■ Allocation and assignment edges
induce subset constraints
□ Reason: Just because we know that
p = new A(); // alloc1

does not mean that later we cannot see

p = new B(); // alloc 2

■ Example:

induces constraint

{alloc1} ⊆ pts(p)

alloc1 p



40 - 2

Subset-based Analysis

■ Allocation and assignment edges
induce subset constraints
□ Reason: Just because we know that
p = new A(); // alloc1

does not mean that later we cannot see

p = new B(); // alloc 2

■ Example:
Note: Analysis is
flow-insensitive,
i.e., values are
never assumed to
be overwritteninduces constraint

{alloc1} ⊆ pts(p)

alloc1 p



41

Computing Points-to Sets

■ New helper node: Concrete fields

■ Represents all objects pointed to by
field f of all objects created at
allocation site

□ E.g., alloc1.f



42

Computing Points-to Sets (2)

Iterative propagation algorithm

■ Initialize pts(v) according to allocation edges

■ Repeat until no changes

□ Propagate sets along assignment edges a → b

□ For each load edge a.f → b:

• For each c ∈ pts(a), propagate pts(c.f) to pts(b)

□ For each store edge a → b.f :

• For each c ∈ pts(b), propagate pts(a) to pts(c.f)



102



44

Simpler Variants

■ Spark framework supports many
variants

□ Just one allocation site per type

□ Fields simply represented by their signature

□ Equality instead of subsets for assignments

□ Etc.



45

Spark

■ Pros

□ Generic algorithm where precision and

efficiency can be tuned

□ Jointly computing call graph and points-to sets

increases precision

■ Cons

□ Still flow-insensitive

□ Can be quite expensive to compute



46

Overview

■ Introduction

■ Simple & efficient: CHA, RTA

■ Analyzing assignments: VTA, DTA

■ Call graphs and points-to analysis:
Spark ✓


