
Program Analysis, University of Stuttgart, Winter 2023/2024

Exercise 4: Information Flow and Call Graphs
—Solution—

Deadline for uploading solutions via Ilias:
January 18, 2024, 11:59pm Stuttgart time

Task 1 Information Flow Analysis [32 points]

This task is about dynamic information flow analysis. Consider the following JavaScript code
to analyze:

1 let paymentMethod = getPaymentMethod();

2 let paymentPassword = getPassword(paymentMethod)

3 let paymentInfo = shopping(paymentMethod, paymentPassword);

4

5 if (paymentInfo[3] == false) {

6 console.alert("Error.");

7 // use another paymentMethod

8 newPaymentMethod = changePaymentMethod(paymentMethod);

9 paymentMethod = newPaymentMethod;

10 paymentPassword = getPassword(paymentMethod)

11 paymentInfo = shopping(paymentMethod, paymentPassword);

12 }

13

14 let userId = getUserId();

15 if (paymentMethod == "card") {

16 if (paymentInfo[2] > 100) {

17 sendToThirdParty(userId, paymentInfo[0]);

18 }

19 } else {

20 console.log("Purchased: ${paymentInfo[1]}")
21 }

This code snippet illustrates the sequential steps a user follows to make a purchase on
an online mall. It assumes two payment methods: card and Paypal. In the event of an initial
payment failure, an alternative payment method will be attempted to facilitate the continuation
of the transaction. Function changePaymentMethod is used to switch the payment methods.
Table 1 lists the details of payment methods (password, and whether it gets a sufficient balance)
and the information of purchased products of two users. Assume both of them start payment
with card.

1



Table 1: Details on payment methods and products

userId Card Paypal Product Price

1 passwordA, sufficient passwordB, sufficient Product1 139
2 passwordC, insufficient passwordD, sufficient Product2 20

The functions console.alert, sendToThirdParty and console.log are untrusted sinks
that should be reached by public information only. The function shopping returns an array
of four values: [cardPaypalNumber, product, price, isPaid]. The elements of an array
can have different security labels. There are four security classes for this program, which are
presented in the lattice in Figure 1.

Figure 1: Lattice of security labels for Task 1.

The variable and the values returned by the functions are labeled as follows:

• paymentPassword: Secret.

• shopping: Returns an array of four elements:

Element 1. cardPaypalNumber: Secret

Element 2. product: Public

Element 3. price: Privileged

Element 4. isPaid: Privileged

• getPaymentMethod: Returns a Public value.

• changePaymentMethod: Returns a Public value.

• getUserId: Returns a Secret value.

2



Subtask 1.1 User 1 [16 points]

Consider a dynamic information flow analysis that considers both explicit and implicit flows.
The information policy is that only Public information should reach the untrusted sinks.

• What are the security labels of variables and expressions (after executing the given line)
during the execution? Use the following template to provide your answer. For unreachable
lines of code during this execution, fill the security label with Unreachable.

Solution:

Line Variable or expression Security label

1 paymentMethod Public

2 paymentPassword Secret

3 paymentInfo paymentInfo[0]: Secret,
paymentInfo[1]: Public,
paymentInfo[2]: Privileged,
paymentInfo[3]: Privileged

5 paymentInfo[3] == false Privileged

8 newPaymentMethod Unreachable

14 userId Secret

16 paymentInfo[2] > 100 Privileged

• Does the execution violate the information flow policy? Explain your answer.

The execution reaches an untrusted sink (sendToThirdParty) after executing line 17.
It gets the values userId and paymentInfo[0], which are Secret. Conclusion: The
execution violates the policy.

• If the answer to the previous question was yes: How can you modify the line(s) of code
causing the violation of the policy so that you reduce information leakage?

Avoid using the untrusted sink (sendToThirdParty).

• Assume an attacker does not know the source code of the program but sees all values
passed as arguments to the untrusted sinks. Does the attacker learn anything about the
cardPaypalNumber of User 1?

Even without the knowing the source code, the attacker learns the cardPaypalNumber,
because it is passed to sendToThirdParty.

3



Subtask 1.2 User 2 [16 points]

Consider a dynamic information flow analysis that considers both explicit and implicit flows.
Again, the information policy is that only Public information should reach the untrusted sinks.

• What are the security labels of variables and expressions (after executing the given line)
during the execution? Use the following template to provide your answer. For unreachable
lines of code during this execution, fill the security label with Unreachable.

Solution:

Line Variable or expression Security label

1 paymentMethod Public

2 paymentPassword Secret

3 paymentInfo paymentInfo[0]: Secret,
paymentInfo[1]: Public,
paymentInfo[2]: Privileged,
paymentInfo[3]: Privileged

5 paymentInfo[3] == false Privileged

8 newPaymentMethod Privileged

14 userId Secret

16 paymentInfo[2] > 100 Unreachable

• Does the execution violate the information flow policy? Explain your answer.

The execution reaches to two untrusted sinks (console.alert in line 6, console.log
in line 20). The branch that line 6 depends on Privileged data (paymentInfo[3] ==

false, which has label Privileged
⊕

Public = Privileged). This causes an implicit flow
to console.alert, which means the execution violates the policy. The console.log in
line 20 is reached by Public information only, however, it also involves in an implicit flow.
When the user pays with Paypal, the execution of line 20 will leak the privileged data in
lines 5 and 15.

• If the answer to the previous question was yes, how can you modify the line(s) of code
causing the policy violtion so that you reduce information leakage?

Avoid using the untrusted sinks (console.alert, console.log) at lines 6 and 20.

• Assume an attacker who does not know the source code but sees all values passed as
arguments to the untrusted sinks. Does the attacker learn anything about whether User 2
has paid for the product with the payment method the user has selected first?

No, because the message passed to console.alert is a generic message it does not reveal
anything about the user’s ability to pay the requested amount.

• Now assume an attacker who knows the source code and also sees all values passed as
arguments to the untrusted sinks. Does the attacker learn anything about whether User 2
has paid for the product with the payment method the user has selected first?

4



Yes, the attacker learns that the user was not able to pay the amount, because the message
"Error. is passed to console.alert if and only if paymentInfo[3] == false evaluates
to false.

5



Task 2 Universally Bounded Lattice [12 points]

In this task, we will analyze the characteristics and properties of universally bounded lattices.

Subtask 2.1 Draw the defined lattices [4 points]

Consider a policy defined with the following ordering rules: A > D, B > D, C > D, D > E, D >

F, E > G, F > G, where A, B, C, D, E, F and G are corresponding security labels.

• Draw the graph of the previously defined Lattice.

• Is it a universally bounded lattice (Explain)?

No. It is impossible to define a least upper bound operator.

• Consider a policy that only uses the labels B, D, E, F, G (with same previous ordering
rules). Is it a universally bounded lattice (Explain)? Yes, because it has all the necessary
characteristics: – A limited set of security classes – A partial order – A lower bound –
An upper bound – A least upper bound operator – A greatest lower bound operator

6



Subtask 2.2 Characteristics [8 points]

Consider the following structure that represents a universally bounded lattice:

Answer the following questions:

• Give the set S of security classes.

Solution:
S = ABC, AB, BC, AC, A, B, C, ∅

• What is the lower bound ⊥?

Solution:
⊥ = ∅

• What is the upper bound ⊤?

Solution:
⊤ = ABC

• Let
⊕

be the least upper bound operator. What is the result of the following operations?

Solution:
B

⊕
AB = AB

ABC
⊕

∅ = ABC

B
⊕

C = ABC

• Let
⊗

be the greatest lower bound operator. What is the result of the following opera-
tions?

Solution:
C

⊗
AC = C

ABC
⊗

A = A

7



Task 3 Call Graphs: CHA, RTA and VTA [56 points]

Consider the following class diagram of a Java program:

Figure 2: Class Diagram

The implementation of the class NatureArt is presented in the snippet of code below. All
the classes and interfaces presented in the diagram are in a package called model. Thus, line 3
(in the code) imports all of them.

1 import java.util.ArrayList;

2 import java.util.List;

3 import model.*

4

5 class NatureArt {

6 public static void main(String[] args) {

7 Flower flower = new Flower();

8 Tree oakTree = new Tree();

9 Rose rose1 = new Rose();

10 flower = (Flower)rose1;

11

12 List<Plant> plants = new ArrayList<Plant>();

13 plants.add(flower);

14 plants.add(oakTree);

15

16 flower.draw();

17 drawNaturalScene();

18 }

19

8



20 public static void drawNaturalScene() {

21 Background sky = new Sky();

22 Flower rose2 = new Rose();

23

24 sky.draw();

25 rose2.draw();

26 }

27 }

Subtask 3.1 CHA Graph [8 points]

• Considering the previous class diagram in Figure 2 and the snippet of code, provide the
call graph computed by the CHA (Class Hierarchy Analysis) algorithm. In this and the
following tasks, you can ignore any call graph nodes that are not given in the template.

9



Subtask 3.2 RTA Graph [8 points]

• Considering the previous class diagram in Figure 2 and the snippet of code, provide the
call graph computed by the RTA (Rapid Type Analysis) algorithm.

10



Subtask 3.3 VTA Graph [14 points]

• Considering the previous class diagram in Figure 2 and the snippet of code, provide the
type propagation graph computed by VTA (Variable Type Analysis).

• Based on the types computed by VTA, give the call graph that VTA produces starting
from the RTA graph.

11



Subtask 3.4 DTA Graph [14 points]

• Considering the previous class diagram in Figure 2 and the snippet of code, provide the
type propagation graph computed by DTA (Declared Type Analysis).

• Based on the types computed by DTA, provide the call graph.

12



Subtask 3.5 Dynamic Execution Call Graph [8 points]

• By performing a dynamic execution of the previous program, provide the call graph rep-
resenting only the calls that happen during the dynamic execution.

Subtask 3.6 Comparision Between Algorithms [4 points]

• Using previously computed graphs, fill in the following table (Useless edges are edges that
don’t appear in the graph computed from dynamic execution):

Algorithm Total number of edges Number of useless edges

CHA 18 7
RTA 13 2
VTA 12 1
DTA 13 2

13


	Information Flow Analysis [32 points]
	User 1 [16 points]
	User 2 [16 points]

	Universally Bounded Lattice [12 points]
	Draw the defined lattices [4 points]
	Characteristics [8 points]

	Call Graphs: CHA, RTA and VTA [56 points]
	CHA Graph[8 points]
	RTA Graph [8 points]
	VTA Graph [14 points]
	DTA Graph [14 points]
	Dynamic Execution Call Graph[8 points]
	Comparision Between Algorithms [4 points]


