
Program Analysis, University of Stuttgart, Winter 2023/24

Exercise 2: Data Flow Analysis
—Solution—

Deadline for uploading solutions via Ilias:
November 16, 2023, 11:59pm Stuttgart time

1 Available Expressions & Live Variables [70 points]

Consider the following program in a toy language with a syntax inspired by Python. Assume that
all variables are integers and that operators have the obvious semantics.

1 left = n - m

2 right = n + m

3 if left == right:

4 return

5 temp = 0

6 while (temp != left + right - temp):

7 temp = temp + 1

8 mid = left + right - temp

9 if n == mid:

10 print(" obvious ")

11 if 2 * temp == 2 * n:

12 print(" another obvious statement ")

1

1.1 PART I: Available Expressions [25 points]

Your task is to perform the Available Expressions data flow analysis, as presented in the lecture.
Complete the following subtasks.

1.1.1 Control-Flow Graph [5 points]

Draw the control-flow graph (CFG) of the given program. As in the lecture, nodes are individual
statements. Label each statement/node in the graph with the line number corresponding to that
statement in the program, to help with the following subtasks.

Entry

left = n - m

right = n + m

if left == right:

return n + m temp = 0

if (temp!=left+right-temp)

temp+=1 mid=left+right-temp

if n == mid

print("obvious")

if 2 * temp == 2 * n

print("another
obvious statement")

Exit

2

1.1.2 Transfer Function [10 points]

First, list all non-trivial, arithmetic expressions in the program, i.e., expressions involving the
operators: +, -, and *. Only consider the full expressions, as they appear in the code, and not
subexpressions of those expressions.

Expressions: { n-m, n+m, left+right-temp, temp+1, 2*n, 2*temp}

Next, fill the following table with the gen and kill sets of each statement in the program. The
statement numbers correspond to lines numbers in the program.

Statement s gen(s) kill(s)

1 {n-m} left+right-temp

2 {n+m} left+right-temp

3 ∅ ∅

4 ∅ ∅

5 ∅ {left+right-temp, 2 * temp,

temp+1}

6 {left+right-temp} ∅

7 ∅ {temp+1, left+right-temp, 2 *

temp}

8 {left+right-temp} ∅

9 ∅ ∅

10 ∅ ∅

11 {2*temp, 2*n} ∅

12 ∅ ∅

3

1.1.3 Solving Data Flow Equations [10 points]

Now, use the iterative algorithm from the lecture to solve the data flow equations for each statement
in the program. You can iteratively fill up the second and third column of the table below during
solving.

Statement s AEentry(s) AEexit(s)

1 ∅ {n-m}

2 {n-m} {n+m, n-m}

3 {n+m, n-m} {n+m, n-m}

4 {n+m, n-m} {n+m, n-m}

5 {n+m,n-m} {n+m, n-m}

6 {n+m,n-m} {n+m,n-m,left+right-temp}

7 {n+m,n-m,left+right-temp} {n+m,n-m}

8 {n+m,n-m,left+right-temp} {n+m,n-m,left+right-temp}

9 {n+m,n-m,left+right-temp} {n+m,n-m,left+right-temp}

12 {n+m,n-m,left+right-temp} {n+m,n-m,left+right-temp, 2*temp,

2*n}

14 {n+m,n-m,left+right-temp,
2*temp, 2*n}

{n+m,n-m,left+right-temp, 2*temp,

2*n}

4

1.2 PART II: Live Variables [20]

Your task is to perform the Live Variables data flow analysis, as presented in the lecture. Complete
the following subtasks.

1.2.1 Transfer Function [10 points]

First, write down the domain of the Live Variables analysis for the given program, i.e., complete
the following set.

Domain: { n, m, left, right, temp, mid }

Next, fill the following table with the gen and kill sets of each statement in the program.

Statement s gen(s) kill(s)

1 {n, m} {left}

2 {n, m} {right}

3 {left, right} ∅

4 ∅ ∅

5 ∅ {temp}

6 {temp, left, right} ∅

7 {temp} {temp}

8 {left, right, temp} {mid}

9 {n, mid} ∅

10 ∅ ∅

11 {temp, n} ∅

12 ∅ ∅

5

1.2.2 Solving Data Flow Equations [10 points]

Now, use the iterative algorithm from the lecture to solve the data flow equations for each statement
in the program. You do not need to write down the data flow equations themselves here; you can
iteratively fill up the second and third column of the table below during solving.

Statement s LVentry(s) LVexit(s)

1 {n, m} {left, n, m}

2 {left, n, m} {right, left, n}

3 {left, right, n} {left, right, n}

4 ∅ ∅

5 {left, right, n} {temp, left, right, n}

6 {temp, left, right, n} {temp, left, right, n}

7 {temp, left, right, n} {temp, left, right, n}

8 {temp, left, right, n} {temp, n, mid}

9 {temp, n, mid} {temp, n}

10 {temp, n} {temp, n}

11 {temp, n} ∅

12 ∅ ∅

6

1.3 PART III: Understanding & Application [25 points]

In this part, you will be asked to apply the results from Part I and Part II to optimize a machine
code corresponding to the program given in this task. Suppose that the assembly-like code given
below is the result of compiling the program given in this task. The compiler has no optimizations
activated. Based on the results of the available expressions analysis and the live variables analysis,
we can optimize the assembly code by:

• reusing registers containing available expressions or live variables,

• writing to a different register to avoid overwriting previously computed values that will be
needed in the future, and

• deleting operations that recompute an already computed expression or unnecessarily load a
variable from memory.

The assembly language has eight registers (R0, R1, ..., R7) with R0 being the default register
an instruction operates on. All the registers can be explicitly used for all operations. The set of
instructions of the language is explained in the comments in the assembly code. To help you with
this part, we provide a partial result of applying the above optimizations. Your task is to perform
the following two actions whenever needed:

• Finish the missing parts of the optimized code. The missing parts that you should fill are
marked with .

• There are still unnecessary instructions that need to be removed, such as loading a vari-
able from memory while it is still available in a register. You need to strike through those
instruction (e.g, LOAD [n])

A template for your answer is given after the following, non-optimized version of the code.

Code without optimization:

1 LOAD [n] // load value of variable n into the default register R0

2 MOVE R1, R0 // move the value in R0 to R1, meaning R1:=R0

3 LOAD [m]

4 SUB R1, R0 // subtract the value in R0 from R1, R1:=R1 -R0

5 STORE R1 , [left] // store the value in R1 into the variable left

6

7 LOAD [n]

8 MOVE R1, R0

9 LOAD [m]

10 ADD R1, R0 // R1:=R1+R0

11 STORE R1 , [right]

12

13 LOAD [left]

14 MOVE R1, R0

15 LOAD [right]

16 CMP_EQ R1, R0 // R1 == R0

17 BRANCH_TRUE EXIT // exit the program if the comparison returns TRUE

18

19 LOAD 0

7

20 STORE [temp]

21

22 ENTER_LOOP: // a label defining the point before the loop

23 LOAD [temp]

24 LOAD R1, [left]

25 LOAD R2, [right]

26 LOAD R3, [temp]

27 ADD R1, R2

28 SUB R1, R3

29

30 CMP_EQ R0, R1

31 BRANCH_TRUE EXIT_LOOP

32

33 LOAD [temp]

34 ADD 1

35 STORE [temp]

36 BRANCH ENTER_LOOP

37 EXIT_LOOP: // a label defining the point after the loop

38

39 LOAD [left]

40 LOAD R1, [right]

41 LOAD R2, [temp]

42 ADD R1

43 SUB R2

44 STORE [mid]

45

46 LOAD [n]

47 LOAD R1, [mid]

48 CMP_EQ R0, R1

49 BRANCH_TRUE PRINT1

50

51 SECOND_IF:

52 LOAD [temp]

53 LOAD R1, [n]

54 MULT R0, 2 // R0 = R0 * 2

55 MULT R1, 2

56 CMP_EQ R0, R1

57 BRANCH_TRUE PRINT2

58

59 PRINT1:

60 print "obvious"

61 BRANCH SECOND_IF

62

63 PRINT2:

64 print "another obvious statement"

65 EXIT

8

Code after optimization (your task is to finish the necessary changes):

1 LOAD R7, [n]

2 LOAD R6, [m]

3 MOVE R5, R7

4 SUB R5 , R6

5 STORE R5 , [left]

6

7 --LOAD [n]--

8 --LOAD [m]--

9 ADD R6, R7

10 STORE R6 , [right]

11

12 --LOAD [left]--

13 --LOAD [right]--

14 CMP_EQ R5, R6

15 BRANCH_TRUE EXIT // exit the program if the comparison returns TRUE

16

17 LOAD R4, 0

18 STORE R4 , [temp]

19

20 ENTER_LOOP: // a label defining the point before the loop

21

22 --LOAD [temp]--

23 MOVE R3, R5

24 ADD R3, R6

25 SUB R3, R4

26

27 CMP_EQ R4, R3

28 BRANCH_TRUE EXIT_LOOP

29

30 --LOAD [temp]--

31 ADD R4, 1

32 STORE R4 , [temp]

33 BRANCH ENTER_LOOP

34

35 EXIT_LOOP: // a label defining the point after the loop

36

37 --LOAD [left]--

38 --LOAD R1, [right]--

39 --LOAD R2, [temp]--

40 ADD R1

41 SUB R2

42 STORE R3 , [mid]

43

44 --LOAD [n]--

45 --LOAD R2, [mid]--

46 CMP_EQ R7, R3

47 BRANCH_TRUE PRINT1

9

48

49 SECOND_IF:

50 --LOAD [temp]--

51 --LOAD R1, [n]--

52 MULT R4, 2

53 MULT R7, 2

54 CMP_EQ R4, R7

55 BRANCH_TRUE PRINT2

56

57 PRINT1:

58 //print "obvious"

59 BRANCH SECOND_IF

60

61 PRINT2:

62 //print "another obvious statement"

63 EXIT

10

2 Copy Detect [30 points]

The following is about a data flow analysis that was not discussed in the lecture, which we call
Copy Detection.

Copy Detection is an analysis that detects identical copies of variables at each point of a
program. For example, right after executing the statement x = y, we say that x is a copy of y.
The property is reflexive, meaning that y is also a copy of x. We consider a toy language with
only integer variables. An assignment x=y makes x contains a copy of the value of y, but x and y

point to two different memory locations. A variable x can be a copy of a variable y only through
assignment and transitivity. “Transitivity” here means that if x is a copy of y, and y is a copy of
z, then x is copy of z as well.

Consider the following example:

1 x = 1 // {}

2 y = x // {{y, x}}

3 z = x // {{y, x}, {z, x}, {z, y}, {y, x, z}}

4 x = 2 // {{z, y}}

In the example, the Copy Detection analysis computes all copy sets, i.e., sets of variables that
contain the same value. The copy set after executing a line is shown in the comment at the end
of the line. Initially, after line 1, the set is empty because x is assigned a constant value.

Line 2, where y is assigned the value of x, generates the copy set {x, y}. Subsequently, at line
3, when z is assigned the value of x, another copy set {z, y} is formed. Note that our analysis
encompasses all possible copy sets. Consequently, by the end of line 3, the set of copy sets contains
not only {z, y} but also {y, x, z}, as they are all valid and possible copy sets (as shown in the
comment next to line 3).

Moving to line 4, the value of x is overwritten. The analysis then updates the set of copy sets
by eliminating all sets containing x, which leaves us with one remaining copy set: {z, y}.

11

2.1 Defining a Data Flow Analysis [22 points]

Please describe the Copy Detection data flow analysis using the six properties discussed in the
lecture. Explain the meaning of any formal symbols in your description.

1) Analysis domain:
D = Pow(V ariables(P))
V ariables(P) is the set of all variables that exist in a program P . Pow denotes the mathemat-

ical powerset of a given set.

2) Analysis direction: Forward.

3a) gen(s) function:
if s is of the form x=y and x ∈ V ariables(P) and y ∈ V ariables(P): gen(s) = {{x, y}}
else: gen(s) = ∅

3b) kill(s) function:
if s is of the form y = t: kill(s) = {E for all E ∈ D if y ∈ E}
else: kill(s) = ∅

3c) Transfer function: Let’s first define a helper function that ensure transitivity: Transitiv(F) =
{E for all E ∈ Pow(Union(A)) for all A ∈ Pow(F) if Inter(A) ̸= ∅ and |E| ≥ 2}

Union and Inter denotes the union and intersection of all sets within another set, respectively.

CDexit(s) = Transitiv((CDentry(s) \ kill(s)) ∪ gen(s)).

4) Meet operator: Given the above definitions, intersection. A variable cannot be equal to 2
different values at the same time.

5) Boundary condition (i.e., value of the transfer function at the start/final node of the CFG):
Empty set (for the entry node, because it is a forward analysis).

6) Initial values (i.e., value of the transfer function of nodes at the start of iterative solving):
Empty set (nothing is known yet about whether variables have constant values).

12

2.2 Application [8 points]

In this task, we ask you to perform the Copy Detection analysis that you just defined on the
following program by filling the table below.

1 t = a

2 x = a

3

4 if x > 0:

5 y = x

6 else:

7 y = t

8

9 t = 0

10 z = t + x

11

12 if z == x:

13 print(" obvious but we don ’t know")

14 if y == x:

15 print(" obvious and we should know")

Analysis Domain= {{t,a},{t, x},{t, y},{t, z},{a, x},{a, y},{a, z},{ x, y},{ x, z},{
y, z},{t,a, x},{t,a, y},{t,a, z},{t, x, y},{t, x, z},{t, y, z},{a, x, y},{a, x, z},{a,
y, z},{ x, y, z},{t,a, x, y},{t,a, x, z},{t,a, y, z},{t, x, y, z},{a, x, y, z},{t,a,
x, y, z}}

We removed the subsets of size smaller than two to shorten the answer since they cannot be
concrete copy sets.

13

Stmt. s CDentry(s) CDexit(s)

1 {{}} {{t, a}}

2 {{t, a}} {{t, a}, {a, x}, {t, x}, {t, a

,x}}

4 {{t, a}, {a, x}, {t, x}, {t, a

,x}}
{{t, a}, {a, x}, {t, x}, {t, a

,x}}

5 {{t, a}, {a,x}, {t,x}, {t,a
,x}}

{{t,a},{t,x},{t,y},{a,x},{a,y},{x,y},
{t,a,x},{t,a,y},{t,x,y},{a,x,y},
{t,a,x,y}}

6 {{t,a},{t,x},{t,y},{a,x},
{a,y},{x,y},{t,a,x},{t,a,y},
{t,x,y},{a,x,y},{t,a,x,y}}

{{t,a},{t,x},{t,y},{a,x},{a,y},{x,y},
{t,a,x},{t,a,y},{t,x,y},{a,x,y},
{t,a,x,y}}

7 {{t,a},{t,x},{t,y},{a,x},
{a,y},{x,y},{t,a,x},{t,a,y},
{t,x,y},{a,x,y},{t,a,x,y}}

{{t,a},{t,x},{t,y},{a,x},{a,y},{x,y},
{t,a,x},{t,a,y},{t,x,y},{a,x,y},
{t,a,x,y}}

9 {{t,a},{t,x},{t,y},{a,x},
{a,y},{x,y},{t,a,x},{t,a,y},
{t,x,y},{a,x,y},{t,a,x,y}}

{{a,x},{a, y},{x, y},{a,x, y}}

10 {{a,x},{a, y},{x, y},{a,x, y}} {{a,x},{a, y},{x, y},{a,x, y}}

12 {{a,x},{a, y},{x, y},{a,x, y}} {{a,x},{a, y},{x, y},{a,x, y}}

13 {{a,x},{a, y},{x, y},{a,x, y}} {{a,x},{a, y},{x, y},{a,x, y}}

14 {{a,x},{a, y},{x, y},{a,x, y}} {{a,x},{a, y},{x, y},{a,x, y}}

15 {{a,x},{a, y},{x, y},{a,x, y}} {{a,x},{a, y},{x, y},{a,x, y}}

14

	Available Expressions & Live Variables [70 points]
	Part I
	Control-Flow Graph [5 points]
	Transfer Function [10 points]
	Solving Data Flow Equations [10 points]

	PART II: Live Variables [20]
	Transfer Function [10 points]
	Solving Data Flow Equations [10 points]

	PART III: Understanding & Application [25 points]

	Copy Detect [30 points]
	Defining a Data Flow Analysis [22 points]
	Application [8 points]

