
Program Analysis, University of Stuttgart, Winter 2023/24

Exercise 1: Operational Semantics

Deadline for uploading solutions via Ilias:
November 2, 2023, 11:59pm Stuttgart time

Consider the following SIMP program P:

y := 2; while !x > 3 do if ¬ (!x = !y) then x := !x - 2 else x := !x - 1

and an initial store:

s = {x 7→ 4}

Your task is to evaluate this program using the abstract machine, small-step operational
semantics, and big-step operational semantics, as introduced in the lecture. As a reference, see
the rules and axioms provided in the appendix (copied from Fernandez’ book).

To ease the presentation of your solution, please use the following abbreviations when re-
ferring to parts of the program:

Abbrevation Code

W while !x > 3 do if ¬ (!x = !y) then x := !x - 2 else x := !x - 1

C1 !x > 3

F if ¬ (!x = !y) then x := !x - 2 else x := !x - 1

C2 ¬ (!x = !y)

T x := !x - 2

E x := !x - 1

For each task, we provide a template to fill in your solution. The correct solutions fit into
the template and should align with those parts of the solution that we provide.

Hint: Sketch your solution on scratch paper before filling it into the template.

1

1 Abstract Machine [30 points]

Provide the semantics of the program as a sequence of transitions of the abstract machine for
SIMP. Use the following template, where each line corresponds to a new configuration.

Program Stack Store

→ P ◦ nil nil {x 7→ 4}

→

→

→

→

→ C1 ◦ while ◦ nil C1 ◦ F ◦ nil {x 7→ 4, y 7→ 2}

→

→

→

→

→

→ C2 ◦ if ◦W ◦ nil T ◦ E ◦ nil {x 7→ 4, y 7→ 2}

Recall C2: ¬ (!x = !y)

→

→

→

→

→

→

→ T ◦W ◦ nil nil {x 7→ 4, y 7→ 2}

Recall T : x := !x - 2

2

→

→

→

→

→

→

→ C1 ◦ while ◦ nil C1 ◦ F ◦ nil {x 7→ 2, y 7→ 2}

Recall C1: !x > 3

→

→

→

→

→ nil nil {x 7→ 2, y 7→ 2}

3

2 Small-Step Semantics [40 points]

Provide the semantics of the program as an evaluation sequence using the small-step semantics
of SIMP. Use the following template to provide your solution. For each transition, indicate
above the arrow why you can take the transition. Specifically:

• On top of each transition, indicate the rule or axiom that you use to take the transition.
Note that you have to indicate the name of the reduction axiom or rule at the bottom of
the proof tree. For example, if you resolve a variable in a statement, which is one of two
statements in a sequence, you have to indicate the sequence rule, not the variable rule.

• We do not ask you to provide the proof trees for all transitions, but please provide the
proof tree of the first transition enabled the if reduction rule. Use the template at the
end of the question to provide this proof tree. We provide the proof tree for the first
transition enabled by the seq reduction rule as an example. It is strongly recommended
to at least sketch the proof trees of all transitions for yourself, because it helps understand
what transition steps you can(not) take.

Hint 1: The transitions used in the correct solution should contain 3 uses of axioms and 16
uses of rules.

Hint 2: Each transition is enabled either by a rule or an axiom. In case of an axiom, the
proof tree is flat, i.e., without nothing on top of the horizontal line. In case of a rule, the proof
tree has at least one horizontal line with a hypothesis on top (see the example of the first usage
of seq below).

⟨P, {x 7→ 4}⟩

−−−−−−−→

−−−−−−−→

−−−−−−−→

−−−−−−−→

−−−−−−−→
(ifT)−−−→ ⟨ F; while C1 do F, {x 7→ 4, y 7→ 2}⟩
Recall F represents... if ¬ (!x = !y) then T else E

−−−−−−−→

−−−−−−−→

−−−−−−−→

−−−−−−−→
(seq)−−→ ⟨ T; while C1 do F, {x 7→ 4, y 7→ 2}⟩
Recall T represents... x := !x - 2

4

−−−−−−−→

−−−−−−−→

−−−−−−−→

−−−−−−−→
(while)−−−−→ ⟨ if C1 then (F; while C1 do F) else skip, {x 7→ 2, y 7→ 2}⟩
Recall C1 represents... !x > 3

−−−−−−−→

−−−−−−−→

−−−−−−−→

Proof trees (s stands for {x 7→ 4} and s′ stands for {x 7→ 4, y 7→ 2}):

• Proof tree for first use of seq rule:

(:=)
⟨y := 2, s⟩ → ⟨skip, s′⟩

(seq)
⟨y := 2;W, s⟩ → ⟨skip;W, s′⟩

• Proof tree for first use of if rule:

()

()

()

5

3 Big-Step Semantics [30 points]

Give the semantics of the program as a proof tree based on big-step operational semantics. Use
the template to provide your solution. For each rule or axiom, indicate the name of it, as given
in the appendix. To save space, use the following table to abbreviate different stores.
Hint: You will need only three different stores.

Abbreviation Store

s {x 7→ 4}

s’

s”

Main proof tree:

()
t1 t2

() ()

()

()

()

(seq)
⟨P, s⟩ ⇓ ⟨skip, s′′⟩

Subtree t1:

() ()

(bop)
⟨C1, s

′⟩ ⇓ ⟨true, s′⟩

Subtree t2:

() ()

()

()

() ()

()

()

(ifT)
⟨F, s′⟩ ⇓ ⟨skip, s′′⟩

6

Appendix 1: Rules of SIMP Abstract Machine

(Copied from Programming Languages and Operational Semantics by Maribel Fernandez.)

7

Appendix 2: Rules and Axioms of Small-Step Semantics

(Copied from Programming Languages and Operational Semantics by Maribel Fernandez.)

8

Appendix 3: Rules and Axioms of Big-Step Semantics

(Copied from Programming Languages and Operational Semantics by Maribel Fernandez.)

9

	Abstract Machine [30 points]
	Small-Step Semantics [40 points]
	Big-Step Semantics [30 points]

