
1

Machine Learning for
Programming (ML4P)

Prof. Dr. Michael Pradel

Winter 2023/24
Software Lab, University of Stuttgart

Course page
http://software-lab.org/teaching/winter2023/ml4p/

2

About Me: Michael Pradel

■ Since 9/2019: Full Professor
at University of Stuttgart

■ Before Stuttgart
□ Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
□ PhD at ETH Zurich, Switzerland
□ Postdoctoral researcher at UC Berkeley, USA
□ Assistant Professor at TU Darmstadt
□ Sabbatical at Facebook, Menlo Park, USA

3

About the Software Lab

■ My research group since 2014
■ Focus: Tools and techniques for

building reliable, efficient, and secure
software
□ Program testing and analysis
□ Machine learning, security

■ Thesis and job opportunities

4

Plan for Today

1. Organization

2. Topic of this seminar

5

Why Have a Seminar?

■ Learn fundamentals of doing research
□ Read and digest papers
□ Present complex ideas to others
□ Scientific writing

■ Learn about machine learning and
program analysis
□ Exciting and “hot” research area with highly

relevant practical applications
□ Maybe your future thesis topic

6 - 1

Organization

■ Today: Kick-off meeting

■ During the semester
□ Meetings with mentor
□ Talks by students

■ Your tasks:
□ Term paper
□ Talk
□ Active participation

6 - 2

Organization

■ Today: Kick-off meeting

■ During the semester
□ Meetings with mentor
□ Talks by students

■ Your tasks:
□ Term paper
□ Talk
□ Active participation

Grading:
40%

40%

20%

7

Talk

■ 20 minutes + questions
■ English
■ Present a recent research paper and

how it compares to closely related
work

■ Your mentor will help you prepare the
presentation
□ Ask questions about the paper
□ Send slides one week before the talk
□ Incorporate feedback given by the mentor

8

Talk: Some Advice

Content:
■ No need to explain all technical details
■ But: Must contain some ”meat”

Presentation:
■ Examples are your secret weapon
■ Stick to the time limit
■ Practice, practice, practice

Pro tip: View video How to give a good research talk
by Simon Peyton Jones

9

Talk: Rules

■ Prepare your own slides
□ No copy & paste from existing slides, even if

available

■ You may use examples from the paper
□ Using your own examples is encouraged

10

Term Paper

■ 6 pages
■ English
■ LaTeX template on course web site
■ Summarize the paper in your own

words and discuss it in the context of
closely related work

■ Must be self-containing

11

Term Paper: Some Advice

■ Don’t waste space on basics
■ Examples are your secret weapon

(yes, again)
■ Use a neutral perspective

□ “the analysis” or “the authors”, not “we”

■ Bad English distracts from good
content

■ Revise, revise, revise

12

General Writing Advice

Great book with many useful tips:
“Writing for Computer Science”
by Justin Zobel

13

Term Paper: Rules

■ No verbatim copying or paraphrasing
of existing text
□ Exception: Clearly marked, short quotes

■ You may copy figures (e.g., result
graphs)

■ You must use exclusively your own
example(s)

14

Dates

■ Oct 26, 2023: Deadline for choosing
topics

■ From Nov 9, 2023: Talks

■ Jan 12, 2024:
Draft of term paper

■ Feb 9, 2024:
Final term paper

15

Meetings

■ All meetings are

□ in the classroom

□ without recording

■ Participation is not mandatory

□ But: Active participation contributes to the grade

16

Registering for the “Exam”

■ As with all other courses:
Students must register for the exam

□ Prerequisite for obtaining a grade

■ “Exam” here means participating in
the course

□ No written exam at end of semester

17

Topics To Choose From

■ Recently published research papers:
http://software-lab.org/teaching/winter2023/ml4p/

■ Submit your preferences until next
Thursday (Oct 26, end of day)
□ You pick three topics, we assign one
□ Indicate your preferences in a mail to

katharina.plett@iste.uni-stuttgart.de

18

Plan for Today

1. Organization ✓

2. Topic of this seminar

19 - 1

Topic of This Seminar

Machine Learning for Programming

19 - 2

Topic of This Seminar

Machine Learning for Programming

■ Tools for improving software
reliability and security

■ E.g., automated bug
detection, code completion,
and program repair

19 - 3

Topic of This Seminar

Machine Learning for Programming

■ Source code as data
■ Large code corpora to learn from
■ Train models that predict

program properties

20 - 1

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

ProgramInput Output

20 - 2

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input Output

20 - 3

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output

21

Why Do We Need It?

Basis for various tools that make
developers productive
■ Compilers
■ Bug finding tools
■ Performance profilers
■ Code completion
■ Automated testing
■ Code summarization/documentation

22

Traditional Approaches

■ Analysis has built-in knowledge about
the problem to solve

■ Significant human effort to create a
program analysis
□ Conceptual challenges
□ Implementation effort

■ Analyze a single program at a time

23 - 1

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

23 - 2

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

New code,
execution,
etc.

Information
useful for
developers

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

24 - 1

Traditional
program analysis
■ Manually crafted
■ Years of work
■ Precise, logical

reasoning
■ Heuristics to handle

undecidability
■ Challenged by large

code bases

Neural Software Analysis, CACM’22

24 - 2

Traditional
program analysis
■ Manually crafted
■ Years of work
■ Precise, logical

reasoning
■ Heuristics to handle

undecidability
■ Challenged by large

code bases

Neural software
analysis
■ Automatically learned

within hours or days
■ Data-driven prediction

xxxxx
■ Learn instead of

hard-code heuristics
■ Use big code to our

benefit

Neural Software Analysis, CACM’22

25 - 1

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

25 - 2

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015

Type prediction

Bug detection

Code summarization

Program repair

Code completion

2020

25 - 3

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

TabNine ChatGPTCopilot

26

Three Examples

■ Fixing type errors with PyTy

■ Neural bug detection with CMI-Finder

■ Enabling execution with LExecutor

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

LExecutor: Learning-Guided Execution, FSE’23

PyTy: Repairing Static Type Errors in Python, under review

27 - 1

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

def f(x, y):
s = x + y
if (s % 2) == 0:
return True

Typical evolution of a Python project:

time

Code without
type annotations

27 - 2

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> bool:
s: int = x + y
if (s % 2) == 0:
return True

Partially annotated code

27 - 3

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> bool:
s: int = x + y
if (s % 2) == 0:
return True

Partially annotated code

Type error!

27 - 4

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> Optional[bool]:
s: int = x + y
if (s % 2) == 0:
return True

Fixed type error

28

Too Many Type Errors

■ Most existing Python code bases:
Plenty of static type errors

■ Easy to detect by gradual type checker

■ But: No time to fix them all

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

29

Preliminary Study

■ Many recurring fix patterns

□ But: No unambiguous repair rules

■ Most fixes are local, e.g., single-line

■ Type checker helps localize fix
location

30

PyTy: Approach

Commits with
type error fixes

Dataset of
isolated fixes

Pre-trained
TFix model

Candidate
fix

Code with
type errors

Fixed code

PyTy model

Type checking
for validation

Type checking &
delta debugging

Fine-tuning

31

Data Gathering

1) Keyword-based search for commits

2) Type check old and new code

3) Isolate fixes of exactly one type error

32k type errors removed in 4.5k commits

2.8k isolated type error fixes

32 - 1

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

32 - 2

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

32 - 3

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

32 - 4

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

32 - 5

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

32 - 6

Data Gathering: Example

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):
key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):
self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):
key = CacheKey(key)

Hunk H4
if timeout is None:
...

Old code: New code:
Error: Unbound name basestring

33

Model

* Fine-tuned model, based on pre-trained TFix [Berabi’21],
which is based on pre-trained T5 [Raffel’20]

Erroneous
code with
context

Fixed
code

fix t m lk : C

Seq-to-seq
model *

C ′

Kind of
type error

Error
message

Line with
type error

Code
tokens

34

PyTy: Effectiveness

Samples Effectiveness of PyTy

Classes of type errors (test set) Error Exact
removal match

Incompatible variable type 821 (83) 90.4% 65.1%
Incompatible parameter type 600 (60) 80.0% 36.7%
Incompatible return type 296 (30) 73.3% 43.3%
Invalid type 291 (30) 100.0% 83.3%
Unbound name 258 (26) 76.9% 42.3%
Incompatible attribute type 258 (26) 92.3% 73.1%
Unsupported operand 124 (13) 76.9% 38.5%
Strengthened precondition 59 (6) 83.3% 50.0%
Weakened postcondition 51 (6) 50.0% 0.0%
Call error 8 (1) 100.0% 100.0%

Total 2,766 (281) 85.4% 54.4%

35 - 1

Examples

PyTy finds exactly the developer fix:
vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {’yes’ if constraint > 0
else (’no’ if constraint == 0 else ’check stack’)}")

Code with type error:
vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {’yes’ if constraint > 0
else (’no’ if constrained == 0 else ’check stack’)}")

Unbound name

35 - 2

Examples

Developer fix (semantically equivalent):
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, _fmt(string)

)

PyTy finds a valid fix:
byte_string = _fmt(string)
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, byte_string

)

Code with type error:
string = _fmt(string)
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, string

)

Declared to have type str

but used as bytes

36

Three Examples

■ Fixing type errors with PyTy

■ Neural bug detection with CMI-Finder

■ Enabling execution with LExecutor

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

LExecutor: Learning-Guided Execution, FSE’23 (major rev.)

PyTy: Repairing Static Type Errors in Python, FSE’23 (major rev.)

37 - 1

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

Example 1:

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

37 - 2

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

Example 1: Always True
Doesn’t
match the
message

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

37 - 3

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

if n2 > n1 :

raise ValueError(’Total internal reflection

impossible for n1 > n2’)

Example 1:

Example 2:

Always True
Doesn’t
match the
message

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

37 - 4

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

if n2 > n1 :

raise ValueError(’Total internal reflection

impossible for n1 > n2’)

Example 1:

Example 2:

Always True
Doesn’t
match the
message

Condition and
message are
inconsistent

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

38

CMI-Finder

Goal:
Detect condition-message inconsistencies

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

■ Why?
□ Incorrect conditions may raise unnecessary

warnings or suppress expected warnings

□ Incorrect messages make debugging unnecessarily
hard

■ Hard problem!
□ Must understand both NL and PL

39

Overview of CMI-Finder

Code corpus Code to analyze

Message-condition
pairs

Training Prediction

Warnings about
inconsistencies

Data extraction

Neural model

Preprocessing
& embedding

Generate
inconsistent
examples

6x

40 - 1

Generating Inconsistent Examples

Six generation strategies

■ Mutation of operators

■ Mutation of error messages

■ Random re-combination

■ Pattern-based mutation

■ Embedding-based token replacement

■ Language model-based generation of error

message
When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

40 - 2

Generating Inconsistent Examples

Six generation strategies

■ Mutation of operators

■ Mutation of error messages

■ Random re-combination

■ Pattern-based mutation

■ Embedding-based token replacement

■ Language model-based generation of error

message
When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

Example:

if result.status in (0, 3):
log.warning("Invalid status")

⇓

if result.status in (0, 3):
log.warning("Valid status")

40 - 3

Generating Inconsistent Examples

Six generation strategies

■ Mutation of operators

■ Mutation of error messages

■ Random re-combination

■ Pattern-based mutation

■ Embedding-based token replacement

■ Language model-based generation of error

message
When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

Example:

if not isinstance(config, (tuple, list)):
raise TypeError(’Unable to decode
config: {}’.format(config))

⇓

if not isinstance(config, (tuple, list)):
raise ValueError(’Unable to decode
config: {}’.format(config))

40 - 4

Generating Inconsistent Examples

Six generation strategies

■ Mutation of operators

■ Mutation of error messages

■ Random re-combination

■ Pattern-based mutation

■ Embedding-based token replacement

■ Language model-based generation of error

message
When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

Example:

if x == 0:
raise ValueError(’x must not be zero’)

⇓

if x != 0:
raise ValueError(’x cannot be lower than 0’)

41

Train & Predict

Fine-tuned CodeT5 model

Also tried, but less effective:

■ Binary classifier

■ Contrastive learning

tokenize(condition)
⊕ tokenize(message)

“consistent” or
“inconsistent”

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

Model

42

Evaluation

■ Training data
□ 300k pairs from 40k Python projects

+ 300k inconsistent pairs

■ Real-world test data

□ 66 pairs from 33 historic fixes of

condition-message inconsistencies

□ Seven previously unseen Python projects

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

43

Results

■ AUC of 0.91 (synthetic data) and
0.82 (real-world data)
□ E.g., 0.78 precision and 0.72 recall

on historic fixes

■ 50 new inconsistencies in held-out
projects

■ Complements flake8 and outperforms
a GPT-3 baseline

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

44

Three Examples

■ Fixing type errors with PyTy

■ Neural bug detection with CMI-Finder

■ Enabling execution with LExecutor

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

LExecutor: Learning-Guided Execution, FSE’23 (major rev.)

PyTy: Repairing Static Type Errors in Python, FSE’23 (major rev.)

45 - 1

Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

LExecutor: Learning-Guided Execution, FSE’23

45 - 2

Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Missing variable

LExecutor: Learning-Guided Execution, FSE’23

45 - 3

Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Missing variableMissing function

LExecutor: Learning-Guided Execution, FSE’23

45 - 4

Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Missing variableMissing function

Missing variable

LExecutor: Learning-Guided Execution, FSE’23

45 - 5

Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Missing variableMissing function

Missing variableMissing import
and attribute

LExecutor: Learning-Guided Execution, FSE’23

46

Why Execute Incomplete Code?

Enables various dynamic analyses

■ Check for exceptions and assertion violations

■ Compare two code snippets for semantic

equivalence

■ Validate static analysis warnings

■ Validate and filter LLM-predicted code

■ ⟨Your favorite application here⟩

LExecutor: Learning-Guided Execution, FSE’23

47 - 1

Executing Ain’t Easy

Lots of incomplete code:

■ Code snippets from Stack Overflow

■ Code generated by language models

■ Code extracted from deep inside complex projects

LExecutor: Learning-Guided Execution, FSE’23

47 - 2

Executing Ain’t Easy

Lots of incomplete code:

■ Code snippets from Stack Overflow

■ Code generated by language models

■ Code extracted from deep inside complex projects

Can we automatically fill in the missing
information?

LExecutor: Learning-Guided Execution, FSE’23

48

LExecutor

Learning-guided approach for executing
arbitrary code snippets

■ Predict missing values with neural model

■ Inject values into the execution

Underconstrained execution:
No guarantee that values are realistic

LExecutor: Learning-Guided Execution, FSE’23

49 - 1

Example

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

LExecutor: Learning-Guided Execution, FSE’23

49 - 2

Example

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Non-empty list

LExecutor: Learning-Guided Execution, FSE’23

49 - 3

Example

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Non-empty listFunction that returns True

LExecutor: Learning-Guided Execution, FSE’23

49 - 4

Example

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Non-empty listFunction that returns True

Non-empty string

LExecutor: Learning-Guided Execution, FSE’23

49 - 5

Example

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

...

Non-empty listFunction that returns True

Non-empty stringObject with
a method

LExecutor: Learning-Guided Execution, FSE’23

50

Overview of LExecutor

Executable code Code to execute

Instrumented code Instrumented code

Execute

Context-value pairs

Train Code context with
missing value

Likely runtime value

Neural model Runtime engine

Training Prediction

Instrumentation

51 - 1

Neural Model: Data Representation

Code
context

ValueModel

LExecutor: Learning-Guided Execution, FSE’23

51 - 2

Neural Model: Data Representation

Code
context

Value

n ⟨sep⟩ k ⟨sep⟩ cpre ⟨mask⟩ cpost

Name used to
refer to a value

Kind of value
(variable,
attribute, or
return value)

Code
before/after the
reference to the
value

Model

LExecutor: Learning-Guided Execution, FSE’23

51 - 3

Neural Model: Data Representation

Code
context

Value

Concrete values abstracted
into 23 classes, e.g.,

■ None, True, False

■ Negative/zero/positive integer

■ Empty/non-empty list

■ Callable

Model

LExecutor: Learning-Guided Execution, FSE’23

52

Train & Predict

■ Fine-tune a pre-trained CodeT5 model

■ During prediction:
For each use of a value

□ Read value and, if it exists, return it

□ If undefined, query the model and return its

prediction

LExecutor: Learning-Guided Execution, FSE’23

53

Evaluation

■ Training data
□ 226k unique value-use events from five projects

■ Code snippets to execute
□ Open-source functions: 1,000 extracted from

five projects

□ Stack Overflow snippets: 462 syntactically

correct code snippets in answers to 1,000

Python-related questions

LExecutor: Learning-Guided Execution, FSE’23

54 - 1

Results

■ Accuracy of neural model:
80.1% (top-1) – 94.2% (top-5)

■ Successfully executed lines:

LExecutor: Learning-Guided Execution, FSE’23

54 - 2

Results

■ Accuracy of neural model:
80.1% (top-1) – 94.2% (top-5)

■ Successfully executed lines:

Variants of
LExecutor

LExecutor
without model

State of
the art

LExecutor: Learning-Guided Execution, FSE’23

55 - 1

Example: Stack Overflow Snippet

plt.figure(figsize=(16, 8))

for i in range(1, 7):

plt.subplot(2, 3, i)

plt.title(’Histogram of {}’.format(str(i)))

plt.hist(x[:, i-1], bins=60)

LExecutor: Learning-Guided Execution, FSE’23

55 - 2

Example: Stack Overflow Snippet

plt.figure(figsize=(16, 8))

for i in range(1, 7):

plt.subplot(2, 3, i)

plt.title(’Histogram of {}’.format(str(i)))

plt.hist(x[:, i-1], bins=60)

Object Method that
returns nothing

Methods that
return nothing

Non-empty
tuple

LExecutor: Learning-Guided Execution, FSE’23

55 - 3

Example: Stack Overflow Snippet

plt.figure(figsize=(16, 8))

for i in range(1, 7):

plt.subplot(2, 3, i)

plt.title(’Histogram of {}’.format(str(i)))

plt.hist(x[:, i-1], bins=60)

Object Method that
returns nothing

Methods that
return nothing

Non-empty
tuple

Crash
TupleError: tuple indices must be
integers or slices, not tuple

LExecutor: Learning-Guided Execution, FSE’23

56

Summary

■ Machine learning for programming

□ Fixing type errors with PyTy

□ Neural bug detection with CMI-Finder

□ Enabling execution with LExecutor

■ Next steps

□ Check topics on course page

□ Indicate your preferences by Oct 26

