
1

Machine Learning for
Programming (ML4P)

Prof. Dr. Michael Pradel

Winter 2022/23
Software Lab, University of Stuttgart

Course page
http://software-lab.org/teaching/winter2022/ml4p/

2

About Me: Michael Pradel

■ Since 9/2019: Full Professor
at University of Stuttgart

■ Before Stuttgart
□ Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
□ PhD at ETH Zurich, Switzerland
□ Postdoctoral researcher at UC Berkeley, USA
□ Assistant Professor at TU Darmstadt
□ Sabbatical at Facebook, Menlo Park, USA

3

About the Software Lab

■ My research group since 2014
■ Focus: Tools and techniques for

building reliable, efficient, and secure
software
□ Program testing and analysis
□ Machine learning, security

■ Thesis and job opportunities

4

Plan for Today

1. Organization

2. Topic of this seminar

5

Why Have a Seminar?

■ Learn fundamentals of doing research
□ Read and digest papers
□ Present complex ideas to others
□ Scientific writing

■ Learn about machine learning and
program analysis
□ Exciting and “hot” research area with highly

relevant practical applications
□ Maybe your future thesis topic

6 - 1

Organization

■ Today: Kick-off meeting

■ During the semester
□ Meetings with mentor
□ Talks by students

■ Your tasks:
□ Term paper
□ Talk
□ Active participation

6 - 2

Organization

■ Today: Kick-off meeting

■ During the semester
□ Meetings with mentor
□ Talks by students

■ Your tasks:
□ Term paper
□ Talk
□ Active participation

Grading:
40%

40%

20%

7

Talk

■ 15 minutes + questions
■ English
■ Present a recent research paper

■ Your mentor will help you prepare the
presentation
□ Ask questions about the paper
□ Send slides one week before the talk
□ Incorporate feedback given by the mentor

8

Talk: Some Advice

Content:
■ No need to explain all technical details
■ But: Must contain some ”meat”

Presentation:
■ Examples are your secret weapon
■ Stick to the time limit
■ Practice, practice, practice

Pro tip: View video How to give a good research talk
by Simon Peyton Jones

9

Talk: Rules

■ Prepare your own slides
□ No copy & paste from existing slides, even if

available

■ You may use examples from the paper
□ Using your own examples is encouraged

10

Term Paper

■ 6 pages
■ English
■ LaTeX template on course web site
■ Summarize the paper in your own

words
■ Must be self-containing

11

Term Paper: Some Advice

■ Don’t waste space on basics
■ Examples are your secret weapon

(yes, again)
■ Use a neutral perspective

□ “the analysis” or “the authors”, not “we”

■ Bad English distracts from good
content

■ Revise, revise, revise

12

General Writing Advice

Great book with many useful tips:
“Writing for Computer Science”
by Justin Zobel

13

Term Paper: Rules

■ No verbatim copying or paraphrasing
of existing text
□ Exception: Clearly marked, short quotes

■ You may copy figures (e.g., result
graphs)

■ You must use exclusively your own
example(s)

14 - 1

Your Choice

Paper-focused Talk-focused

Term paper Early deadline
for first draft.
Two rounds of
feedback

One round of
feedback

Talk Give talk once Give talk, get
feedback, give
talk again

Grading Same for both. Only final versions count

14 - 2

Your Choice

Paper-focused Talk-focused

Term paper Early deadline
for first draft.
Two rounds of
feedback

One round of
feedback

Talk Give talk once Give talk, get
feedback, give
talk again

Grading Same for both. Only final versions count

Advice: Choose to focus on the skill
you’d like to improve the most

15

Dates

■ From Nov 10, 2022 (Thu, 2pm-3:30pm):
Talks

■ Nov 18, 2022:
First draft of term paper (only
paper-focused students)

■ Jan 13, 2023:
Second draft of term paper

■ Feb 10, 2023:
Final term paper

16

Meetings

■ All meetings are

□ in the classroom

□ without recording

■ Participation is not mandatory

□ But: Active participation contributes to the grade

■ First round of talks:
Starting on Nov 10, 2022

17

Registering for the “Exam”

■ As with all other courses:
Students must register for the exam

□ Prerequisite for obtaining a grade

■ “Exam” here means participating in
the course

□ No written exam at end of semester

18

Topics To Choose From

■ 19 recently published research papers:
http://software-lab.org/teaching/winter2022/ml4p/

■ Submit your preferences until next
Monday (Oct 24, end of day)
□ You pick three topics, we assign one
□ Choose between paper-focused and

talk-focused
□ Indicate your preferences in a mail to

katharina.plett@iste.uni-stuttgart.de

19

Plan for Today

1. Organization ✓

2. Topic of this seminar

20 - 1

Topic of This Seminar

Machine Learning for Programming

20 - 2

Topic of This Seminar

Machine Learning for Programming

■ Tools for improving software
reliability and security

■ E.g., program analyses to
detect bugs, to complete
partial code, or to
de-obfuscate code

20 - 3

Topic of This Seminar

Machine Learning for Programming

■ Source code as data
■ Large code corpora to learn from
■ Train models that predict

program properties

21 - 1

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

ProgramInput Output

21 - 2

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input Output

21 - 3

What is Program Analysis?

■ Automated analysis of program
behavior, e.g., to
□ find programming errors
□ optimize performance
□ find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output

22

Why Do We Need It?

Basis for various tools that make
developers productive
■ Compilers
■ Bug finding tools
■ Performance profilers
■ Code completion
■ Automated testing
■ Code summarization/documentation

23

Traditional Approaches

■ Analysis has built-in knowledge about
the problem to solve

■ Significant human effort to create a
program analysis
□ Conceptual challenges
□ Implementation effort

■ Analyze a single program at a time

24 - 1

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

24 - 2

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

New code,
execution,
etc.

Information
useful for
developers

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

25 - 1

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

25 - 2

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015

Type prediction

Bug detection

Code summarization

Program repair

Code completion

2020

25 - 3

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

CopilotTabNine

26 - 1

Neural Software Analysis
The Good, the Bad, and the Ugly

26 - 2

Bug detection with Nalin

Type prediction with TypeWriter

Neural Software Analysis
The Good, the Bad, and the Ugly

27 - 1

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

27 - 2

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

Incorrect value:
135.0, should be 135

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

27 - 3

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

27 - 4

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Misleading name:
file vs. boolean

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

27 - 5

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size] Commonality:
Name and value
are inconsistent

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Misleading name:
file vs. boolean

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

28 - 1

Goal

Finding name-value inconsistencies

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

28 - 2

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

28 - 3

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Challenge 2:
Understand the
meaning of values

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

28 - 4

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Challenge 2:
Understand the
meaning of values

Challenge 3:
Precisely pinpoint
unusual pairs

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

29

Overview of Nalin

Executable
programs

Training

Prediction

Name-value
inconsistencies

Generation of
negative
examples

Train neural
model

Query neural
model

Dynamic
analysis of
assignments

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

30 - 1

Analyzing Assignments

Dynamic analysis

■ Extract for each assignment

□ Name of left-hand side

□ String representation of value

□ Type of value

□ Length of value

□ Shape of value

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

30 - 2

Analyzing Assignments

Example:

Name Value Type Length Shape

age 23 int null null
probability 0.83 float null null
Xs train [[0.5 2.3]\n [.. ndarray 600 (600,2)
name 2.5 float null null
file name ’example.txt’ str 11 null

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

31

Neural Classification Model

Name

Value

Type

Length of
value

Shape of
value

Feed-
forward
layers

p(inconsistent)

Two linear layers, 50% dropout, Adam optimizer, batch size=128

+

Embed with
FastText

GRU,
CNN

One-
hot

One-
hot

One-
hot

32

Evaluation

■ Experimental setup

□ 947k name-value pairs (Jupyter notebooks)

■ Results

□ Classifier: 89% F1-score

□ User study:

Nalin points out hard-to-understand names

□ Complements static checkers

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

33 - 1

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

33 - 2

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

name = ’Philip K. Dick’

...

name = 2.5

Unusual combination

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

33 - 3

Kinds of Inconsistencies

prob = get_betraying_probability(information)

if prob > 1/2:

return D

Value: "Corporate"

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

33 - 4

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

dwarF = ’/Users/iayork/Downloads/dwar_2013_2015.txt’

dwar = pd.read_csv(dwarF, sep=’ ’, header=None)

Model doesn’t understand the
abbreviation (“F” means “file”)

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

34 - 1

Wouldn’t a type checker find
some of these problems?

Yes, but: Lots of code without
type annotations

34 - 2

Wouldn’t a type checker find
some of these problems?

Yes, but: Lots of code without
type annotations

35

How to Add Type Annotations?

■ Option 1: Static type inference
□ Guarantees type correctness, but very limited

■ Option 2: Dynamic type inference
□ Depends on inputs and misses types

■ Option 3: Probabilistic type prediction

□ Models learned from existing type annotations

36

Probabilistic Type Prediction

Neural model to predict types

Type
annotations

Identifiers
Comments
Code tokens

Neural
model

Prior models, e.g.:
■ Deep Learning Type Inference, FSE’18
■ NL2Type: Inferring JavaScript Function Types from Natural

Language Information, ICSE’19

37

Challenges

■ Imprecision

□ Some predictions are wrong

□ Developers must decide which suggestions to

follow

■ Combinatorial explosion

□ For each missing type: One or more suggestions

□ Exploring all combinations:

Practically impossible

38 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

38 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

38 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

Top-most predictions:
Type errors

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

38 - 4

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

Correct predictions

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

39

Overview of TypeWriter

Type predictions

Program

Program with
type annotations

Search for consistent types

Static type
checker

Probabilistic type prediction

NL info

PL info

Lightweight
static analysis

Neural type
prediction

Feedback-directed
search

40 - 1

Extracting NL Information

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

40 - 2

Extracting NL Information

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Identifiers associated
with the to-be-typed
program element

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

40 - 3

Extracting NL Information

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Function-level
comments

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

41 - 1

Extracting PL Information

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

41 - 2

Extracting PL Information
Tokens around
occurrences of the
to-be-typed code element

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

41 - 3

Extracting PL Information
Tokens around
occurrences of the
to-be-typed code element

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

41 - 4

Extracting PL Information

from ab import de
import x.y.z

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Types made
available via
imports

42

Neural Type Prediction Model

Code
tokens

Identifiers

Comments

Available
types

Type
vector

Token
embedding

Word
embedding

RNN

Hidden
layer +
Softmax

RNN

RNN

one-hot encoded
type mask

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

43 - 1

Searching for Consistent Types

■ Top-k predictions for each missing type

□ Filter predictions using gradual type checker

□ E.g., pyre and mypy for Python, flow for

JavaScript

■ Combinatorial search problem
□ For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

43 - 2

Searching for Consistent Types

■ Top-k predictions for each missing type

□ Filter predictions using gradual type checker

□ E.g., pyre and mypy for Python, flow for

JavaScript

■ Combinatorial search problem
□ For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

Too large to explore exhaustively!
TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

44 - 1

Feedback Function

■ Goal: Minimize missing types without
introducing type errors

■ Feedback score (lower is better):
v · nmissing + w · nerrors

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

44 - 2

Feedback Function

■ Goal: Minimize missing types without
introducing type errors

■ Feedback score (lower is better):
v · nmissing + w · nerrors

Default: v = 1, w = 2,
i.e., higher weight for errors

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

45 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

45 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

45 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

45 - 4

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

45 - 5

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

✔

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

46

Evaluation

■ Experimental setup

□ Facebook’s Python code

□ 5.8 millions lines of open-source code

■ Results

□ Neural model: 80% F1-score (top-5)

□ Search: Correctly annotates 75% of all missing

types in a file

□ Subsumes traditional static type inference
TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

47

Why Does It Work?

Developers use meaningful names

Source code is repetitive

Many programs available as training data

Probabilistic models + NL = ♡

48 - 1

Neural Software Analysis
The Good, the Bad, and the Ugly

48 - 2

Neural Software Analysis
The Good, the Bad, and the Ugly

49 - 1

Let’s address all program
analysis problems through
neural software analysis!

49 - 2

Let’s address all program
analysis problems through
neural software analysis!

50

When to (not) use
neural software analysis?

■ Fuzziness of available information

■ Well-defined correctness criterion

■ Data to learn from

51 - 1

Fuzziness of Available Information

Precise
information

Fuzzy
information

Neural Software Analysis, Pradel & Chandra, CACM’22

51 - 2

Fuzziness of Available Information

If code has
property A,
then B holds.

If code is similar
to pattern A, then
B is likely to hold.

Precise
information

Fuzzy
information

Neural Software Analysis, Pradel & Chandra, CACM’22

51 - 3

Fuzziness of Available Information

If code has
property A,
then B holds.

If code is similar
to pattern A, then
B is likely to hold.

Precise
information

Fuzzy
information

Neural Software Analysis, Pradel & Chandra, CACM’22

Traditional
analysis

Neural
analysis

52 - 1

Well-defined Correctness Criterion

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Specification to
check against

Human
decides

52 - 2

Well-defined Correctness Criterion

E.g., type
checking

E.g., naturalness
of code

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Specification to
check against

Human
decides

52 - 3

Well-defined Correctness Criterion

E.g., type
checking

E.g., naturalness
of code

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Specification to
check against

Human
decides

Traditional
analysis

Neural
analysis

53 - 1

Data to Learn From

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Little data
available

Lots of data
available

53 - 2

Data to Learn From

E.g., anything requiring
human interaction

E.g., code
completion

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Little data
available

Lots of data
available

53 - 3

Data to Learn From

E.g., anything requiring
human interaction

E.g., code
completion

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Little data
available

Lots of data
available

Traditional
analysis

Neural
analysis

53 - 4

Data to Learn From

Want: Realistic, low-noise dataset

E.g., anything requiring
human interaction

E.g., code
completion

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Little data
available

Lots of data
available

Traditional
analysis

Neural
analysis

53 - 5

Data to Learn From

Want: Realistic, low-noise dataset

... for a task that developers care about

E.g., anything requiring
human interaction

E.g., code
completion

Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22Neural Software Analysis, Pradel & Chandra, CACM’22

Little data
available

Lots of data
available

Traditional
analysis

Neural
analysis

54

Neural Software Analysis

When to (not) use it?

Fuzziness of
available information

Low
High

Well-d
efin

ed

co
rre

ctn
ess

cri
terio

n

Not
available

Available

A
m

ou
nt

of
ex

am
pl

es
to

le
ar

n
fro

m

Few

Many

Neural
software
analysis

Neural Software Analysis, Pradel & Chandra, CACM’22

55 - 1

Neural Software Analysis
The Good, the Bad, and the Ugly

55 - 2

Neural Software Analysis
The Good, the Bad, and the Ugly

56

What are these
models actually
learning?

57

Idea: Compare Humans & Models

■ Same task

■ Same code examples

■ Measure attention and
effectiveness

vs.
Machine
Learning

Neural models of codeDevelopers

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

58

Task: Code Summarization

{
if (!prepared(state)) {
return state.setStatus(MovementStatus.PREPPING);

} else if (state.getStatus() == MovementStatus.PREPPING) {
state.setStatus(MovementStatus.WAITING);

}
if (state.getStatus() == MovementStatus.WAITING) {
state.setStatus(MovementStatus.RUNNING);

}
return state;

}

Input: Method body
updateState
Output: Method name

* A Convolutional Attention Network for Extreme Summarization of Source Code, ICML’16

Dataset: 250 methods from 10 Java projects *

59

Capturing Human Attention

■ Goal: Track human attention while
performing the task

■ Approach: Unbluring-based web
interface

□ Initially, all code blurred

□ Moving mouse/cursor temporarily unblurs

tokens

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

60 - 1

Capturing Human Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

60 - 2

Capturing Human Attention

■ 91 participants: Undergrads, graduate
students, crowd workers

■ 1,508 human attention records
■ 5+ records for each of 250 methods
■ On average per record:

1,271 mouse-token events

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

61

Model Attention

Two code summarization models

■ Convolutional sequence-to-sequence (CNN)
A Convolutional Attention Network for Extreme Summarization of
Source Code, ICML’16

■ Transformer-based, sequence-to-sequence model
A Transformer-based Approach for Source Code Summarization,
ACL’20

■ Both models:

Regular attention and copy attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

62

Human-Model Agreement

Do developers and models focus on the
same tokens?

■ Measure agreement between attention vector via

Spearman rank correlation

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

63 - 1

Results: Human-Model Agreement

Human-human agreement:

Developers mostly agree on what code
matters most

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

63 - 2

Results: Human-Model Agreement

Human vs. copy attention:

Empirical justification for copy attention
Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

63 - 3

Results: Human-Model Agreement

Humans vs. regular attention:

Lots of room for improvement!
Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

64

Tokens to Focus On

What kind of tokens to focus on?

■ Different kinds: Identifiers, separators, etc.

■ For each kind, compute distance from uniformity

□ = 0 means uniform attention

□ −1 means no attention at all

□ > 0 means more than uniform attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 1

Results: Tokens to Focus On

Distance from uniformity:

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 2

Results: Tokens to Focus On

Distance from uniformity:

Identifiers
are deemed
important

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 3

Results: Tokens to Focus On

Distance from uniformity:

Models
mostly
ignore
some kinds
of tokens

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 4

Results: Tokens to Focus On

Example from Transformer model:

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 5

Results: Tokens to Focus On

Example from Transformer model:

Model “wastes” attention
on understanding syntax

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

65 - 6

Results: Tokens to Focus On

Example from Transformer model:

Model ignores tokens
important to developers

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

66

Effectiveness vs. Agreement

Are models more effective when they
agree more with developers?

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

67 - 1

Results: Summarization

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

67 - 2

Results: Summarization

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

67 - 3

Results: Summarization

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

More human-like predictions
are more accurate

68

Implications

■ Direct human-model comparison

□ Helps understand why models (do not) work

■ Should create models that mimic
humans

□ Use human attention during training

□ Design models that address current

weaknesses

• E.g., understanding string literals

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

69 - 1

The Road Ahead
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

69 - 2

The Road Ahead

2015 2020

69 - 3

The Road Ahead

General-purpose
language models

2015 2020

69 - 4

The Road Ahead

General-purpose
language models

Combining neural &
traditional analysis

2015 2020

69 - 5

The Road Ahead

General-purpose
language models

Combining neural &
traditional analysis

Reasoning about
executions

2015 2020

70 - 1

Neural Software Analysis
The Good, the Bad, and the Ugly

70 - 2

Neural Software Analysis
The Good, the Bad, and the Ugly

Bug detection with Nalin

Type prediction with TypeWriter

70 - 3

Fuzziness of
available information

Low
High

Well-d
efin

ed

co
rre

ctn
ess

cri
terio

n

Not
available

Available

A
m

ou
nt

of
ex

am
pl

es
to

le
ar

n
fro

m

Few

Many

Neural
software
analysis

Neural Software Analysis
The Good, the Bad, and the Ugly

Bug detection with Nalin

Type prediction with TypeWriter

70 - 4

Fuzziness of
available information

Low
High

Well-d
efin

ed

co
rre

ctn
ess

cri
terio

n

Not
available

Available

A
m

ou
nt

of
ex

am
pl

es
to

le
ar

n
fro

m

Few

Many

Neural
software
analysis

Neural Software Analysis
The Good, the Bad, and the Ugly

Bug detection with Nalin

Type prediction with TypeWriter

