Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Winter 2021/2022
1

Warm-up Quiz

What does the following code print?

var x = 5;
var y = Number(5);
var z = new Number(5) ;

x.foo = "bar"; y.foo = "bar"; z.foo = "bar",
console.log(x.foo) ;
console.log(y.foo) ;
console.log(z.foo) ;

bar undefined bar Some-
bar undefined undefined thing
bar undefined bar else

Warm-up Quiz

What does the following code print?
“undefined” (x and y are

var x = 5; . I hich
var y = Number(5) ; primitive values, whic
var z = new Number(5); cannot have properties)

xX.foo = "bar"; y.foo = "bar"; z.foo = "bay

console.log(x.fo0); =
console.log(y.foo) ; «—

console.log(z.foo); <= “bar” (z is an object)

bar undefined bar
bar undefined undefined
bar undefined bar

Outline

1. Introduction
2. Information Flow Policy
3. Analyzing Information Flows

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

Secure Computing Systems

= Overall goal: Secure the data
manipulated by a computing system

= Enforce a security policy

o Confidentiality: Secret data does not leak to
non-secret places

o Integrity: High-integrity data is not influenced
by low-integrity data

Information Flow

= Goal of information flow analysis:

Check whether information from one
“place” propagates to another “place”

o For program analysis, "place” means, e.g.,
code location or variable

= Complements techniques that impose

limits on releasing information
1 Access control lists
o Cryptography

Scent
;w&arw\ c\'\': 0w 0

o

-

“ ?(ka S " A rn)D(o\w

O
Possr bl ?

—

Tt

‘/\ ® (Ok o(a""‘x

84

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 1234;
var X = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

- 1

Example: Confidentiality

Credit card number should not leak to

visible

var creditCardNb = 123:17 Secret information
var X = cred:l.tCa.rdNb; propagates to x
var visible = false;
if (x > 1000) {

visible = true; ~——— Secret information

} (partly) propagates
fo visible

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident
var x = userInput();
var designatedPresident

"Michael";

I
Ky

- 1

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
var designatedPresident = x;

\

Low-integrity information
propagates to high-integrity
variable

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael';
var x = userInput();
if (x.length === 5) {

var designatedPresident = "Paul";
}

Example: Integrity

userInput should not influence who
becomes president

var designatedPresident = "Michael',
var x = userInput();
if (x.length ===15) { =

var designatedPresident = "PaulN
}

Low-integrity information
propagates to high-integrity
variable

Confidentiality vs. Integrity

Confidentiality and integrity are dual
problems for information flow analysis

(Focus of this lecture: Confidentiality)

Tracking Security Labels

How to analyze the flow of information?

= Assign to each value some meta
information that tracks the secrecy of
the value

= Propagate meta information on
program operations

10

E?‘“m&

s CN’:"

var creditCardhNb =|1234}
var x = creditCardNb;
var visible = false;

- - -, a

Visible = THUsgs

- e

}

Sc:"f/k

. (‘0\/("0\:‘"3 [

VthC

85

Non-Interference

Property that information flow analysis
aims to ensure:

Confidential data does not interfere with
public data

m Variation of confidential input does not cause a
variation of public output

m Attacker cannot observe any difference between
two executions that differ only in their confidential
input

12

Outline

1. Introduction

2. Information Flow Policy -«
3. Analyzing Information Flows

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

13

Lattice of Security Labels

How to represent different levels of
secrecy?

= Set of security labels
= Form a universally bounded lattice

14

+“3L‘ Tar Sce t—¢+
| !
Low SL cd/"
J
[ov\(\'o@v\‘k“‘
!
Tubo ke

(/\Nous 30 ,(:"’IM wa O™ secee gtwh"v) dass

do lesg secret Stcuf';J\') Aass .)

86

< N},C\
A RC AC
I><A<]
i B C

10(4'/\ c‘-td Lo\'u ' <cs

Uv\:\l(rgg“h
J

Tuple (s, -, .LT,©®)

whert

S .

- ,

1
T .
@

@ ..

svl' 0& xcuri“ﬂ? classes
TARC, AR BC AC A X C, 6§

far-‘\'oJ ocole r (Su ,fi)\..—c)

(owu* \>\‘)uv\¢‘ B

wppe” bowndl ARC

ok wppre Gonelopuchor “\
(H COW\‘D;M:V‘) "'\.Jb chCAﬂ 64 'vv)tm‘wa lr»‘OM
um;O\/\ A Q.j' AB @A ~ *3 ' ﬁ(_D*C?kC

CxS —S

Bfud-td— lower wowd gtuodor ‘ CxS—=S
[atiegeeNonwm L.J, A’LC@Q = C

87

a € U\A‘\Uf'fswu\ BMO(Aé le(\‘us ?.
J

Foo @ A
3/ e
i 1<
D
~N
=

POE =2

o‘(’h“u COWMAA0,,
u‘rf Gouwral g
(A3 C)

. but nove i Hae

P bQu""A

®

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

Goal:
No flow from
source to sink

18 -

1

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information
m Untrusted sinks

var creditCardNb = 1234;
Goal: var X = creditCardNb;

No flow from var visible = false;
if (x > 1000) {

source to sink visible = true;
}

18 -

Information Flow Policy

Policy specifies secrecy of values and
which flows are allowed:

m Lattice of security classes
m Sources of secret information

m Untrusted sinks x
var creditCardNb =|1234;
Goal: var x = creditCardNb;
No ﬂow from var|visible |= false;

] if (x > 1000) {
source to sink visible = true;

} 18 -

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequent

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23) {
// continue normal program execution

} else {
// display message: incorrect password

}

19 -

1

Declassification

m "No flow from high to low” is impractical

m E.g., code that checks password against a hash
value propagates information to subsequent

statements
But: This is intended

var password = .. // secret
if (hash(password) === 23]
// continue normal program execution

} else {
// display message: incorrect password

} Declassification: Mechanism to remove or
lower security class of a value

19 -

Outline

1. Introduction
2. Information Flow Policy

3. Analyzing Information Flows <«

Mostly based on these papers:

m A Lattice Model of Secure Information Flow, Denning, Comm
ACM, 1976

m Dytan: A Generic Dynamic Taint Analysis Framework, Clause
et al., ISSTA 2007

20

Analyzing Information Flows

Given an information flow policy,
analysis checks for policy violations

Applications:
m Detect vulnerable code (e.g, potential SQL
Injections)
m Detect malicious code (e.g., privacy violations)

m Check if program behaves as expected (e.q.,
secret data should never be written to console)

21

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

22 -

1

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x = creditCardNb;
var visible = false;
if (x > 1000) {

visible = true;

}

22 -

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence

= Implicit flows: Caused by control flow
dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

} x> 1000 t0ovisible

Explicit flow from

22 -

Explicit vs. Implicit Flows

= Explicit flows: Caused by data flow
dependence +—__ Some analyses consider

only these
= Implicit flows: Caused by control flow

dependence

var creditCardNb = 1234;
var x ="creditCardNb;
var visible = false; creditCardNb 10 x

if (x > 1000), { .
visible = tide: Implicit flow from

) x> 1000 t0ovisible

Explicit flow from

22 -

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information "may flow” from
secret source to untrusted sink

= Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

23 -

1

Static and Dynamic Analysis

= Static information flow analysis

o Overapproximate all possible data and control
flow dependences

o Result: Whether information "may flow” from
secret source to untrusted sink

a| Dynamic information flow analysis

0 Associate security labels ("taint markings”)
with memory locations
o Propagate labels at runtime

Focus of rest of this lecture

23 -

2

Taint Sources and Sinks

s Possible sources:
o Variables
o Return values of a
particular function
o Data from a
particular 1/0O stream

24 -

1

Taint Sources and Sinks

s Possible sources:
o Variables
o Return values of a
particular function
o Data from a
particular 1/0O stream

s Possible sinks:
o Variables
o Parameters given to
a particular function
o Instructions of a
particular type (e.g.,
jump instructions)

24 -

Taint Sources and Sinks

s Possible sources: = Possible sinks:

o Variables o Variables

o Return values of a 0 Parameters given to
particular function a particular function

n Data from a o Instructions of a
particular 1/0O stream particular type (e.g.,

jump instructions)

Report illegal flow if taint marking flows
to a sink to which it should not flow

24 -

Taint Propagation

1) Explicit flows

For every operation that produces a new
value, propagate labels of inputs to label
of output:

label (result) < label(inpy) @ ... B label(inp)

25

Taint Propagation (2)

2) Implicit flows

Maintain security stack S: Labels of all values
that influence the current flow of control

When z influences a branch decision at location
loc, push label(x) on S

When control flow reaches immediate
post-dominator of loc, pop label(x) from S

When an operation is executed while S'is
non-empty, consider all labels on S as input to the

operation
26

89

E*‘M’V‘)(L A

?0(\\¢\3 : y Sfcqr\"") Ao ssen ; rv'o(»‘(, sec oy = .
* SOufce variable " eceolid Card Nb

il + wvaradle “isible
] (bl (crto(a*cudNL)-: secct

/ Lpuet flow abell (x) = secet
e R L 1232J lobel (vicibll) = prblic

var x = creditCardNb; g " b
var visible = false; / wore mtecurcoliate va

if (x > 1000) { e~ Lt = label ()@ labet (10%)
visible = true;

} - sccr(,-l'® rub\f\g = S¢°"C+
'w.s\»\ X §cu-o*“ 0\»""0 S

label (v‘SQSLc\ - Scut* @ (abel (—"ﬂne)
= seetd @ "“"“‘b & secrct

-

— \,BO(AJ\'W\ Ok Pe\;cj

Example 2: Quiz

var x = getX(); PO"CY:

var y = x + 5; _

var z = true; m Security classes:
if (y === 10) public, secret

) z = false; = Source: getX
co(z); s Sink: foo ()

Suppose that getXx returns 5. Write down
the labels after each operation.

Is there a policy violation?

28

(n‘o:.i (V\ - 34(,«/'“

leb

‘(u'ovt (2 V= (wBL‘.c.
(ms\a "ceerdd Ao S
z(w'gv((‘t) = SCC!‘C/'! @ f“b\\(, = Sec

Vib\«‘kOv\ }

4(\)\ = Stu(z‘*@ rvbuc = stcrf/"'

<t

90

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;
1f (secret)

X = true;

29 -

1

Hidden Implicit Flows

= Implicit flows may happen even
though a branch is not executed

= Approach explained so far will
miss such “hidden” flows

// label(x) = public, label (secret) = private
var x = false;]]
if (secret) Copies secret into x

X = true; But: Execution where

secret iS false does not
propagate anything

29 -

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,
and bQ:
m Conservatively overapproximate which values

may be defined in b,
m Add spurious definitions into by

30 -

1

Hidden Implicit Flows (2)

Approach to reveal hidden flows:

For every conditional with branches b,

and bQ:
m Conservatively overapproximate which values
may be defined in b,
m Add spurious definitions into by

var x = false; _
if (secret) All executions propagate

X = true; ’secret” label to x
else
x = X; // spurious definition

30 -

Implementation in Dytan

Dynamic information flow analysis for
Xx86 binaries

m Taint markings stored as bit vectors
m One bit vector per byte of memory

m Propagation implemented via instrumentation
(i.e., add instructions to existing program)

m Computes immediate post-dominators via static
control flow graph

31

Summary

Information flow analysis:
Track secrecy of information handled by program

Goal: Check information flow policy
0 Security classes, sources, sinks

Various applications
0 E.g., malware detection, check for
vulnerabilities

There exist channels missed by information flow
analysis
o E.g., power consumption, timing

32

