
Program Testing and Analysis
—Final Exam—

Department of Computer Science
University of Stuttgart

Winter semester 2021/22, March 2, 2021

Name, first name:

Matriculation number:

GENERAL GUIDELINES AND INFORMATION

1. Start this exam only after the instructor has announced that the examination can begin. Please
have a picture ID handy for inspection.

2. You have 60 minutes and there are 60 points. Use the number of points as guidance on how much
time to spend on a question.

3. For multiple choice questions, you get the indicated number of points if your answer is correct,
and zero points otherwise (i.e., no negative points for incorrect answers).

4. You should write your answers directly on the test. Use a ballpoint pen or similar, do not use a
pencil. Use the space provided (if you need more space your answer is probably too long). Do not
provide multiple solutions to a question.

5. Be sure to provide your name. Do this first so that you do not forget! If you must add extra
pages, write your name on each page.

6. Clarity of presentation is essential and influences the grade. Please write or print legibly. State all
assumptions that you make in addition to those stated as part of a question.

7. Your answers can be given either in English or in German.

8. With your signature below you certify that you read the instructions, that you answered the
questions on your own, that you turn in your solution, and that there were no environmental or
other factors that disturbed you during the exam or that diminished your performance.

Signature:

To be filled out by the correctors:
Part Points Score
1 4
2 15
3 15
4 10
5 10
6 6
Total 60

1



Part 1 [4 points]

1. Which of the following statements is true? (Only one statement is true.)
Ü

Weiser’s static slicing algorithm is based on reachability within a control flow graph.
Ü

Weiser’s static slicing algorithm is based on reachability within an abstract syntax
tree.

Ü

Weiser’s static slicing algorithm is based on reachability within a program execution
graph.

Ü

Weiser’s static slicing algorithm is based on reachability within a program dependence
graph.

Ü

Weiser’s static slicing algorithm is based on reachability within a call graph.

2. Which of the following statements is true? (Only one statement is true.)
Ü

The coverage information used by AFL to prioritize inputs is an approximation of
function-level coverage.

Ü

The coverage information used by AFL to prioritize inputs is exact line coverage.
Ü

The coverage information used by AFL to prioritize inputs is exact function-level
coverage.

Ü

The coverage information used by AFL to prioritize inputs is exact path coverage.
Ü

The coverage information used by AFL to prioritize inputs is an approximation of
branch coverage.

3. Which of the following statements is true? (Only one statement is true.)
Ü

A more precise call graph contains fewer edges.
Ü

A more precise call graph contains more edges.
Ü

An imprecise call graph is missing edges that may occur during an execution.
Ü

A precise call graph connects each node to itself and to at least one other node.
Ü

An imprecise call graph is missing method nodes that may occur during an execution.

4. Which of the following statements is true? (Only one statement is true.)
Ü

In a concurrent program, the number of thread interleavings is constant.
Ü

In a concurrent program, the number of thread interleavings is quadratic in the
number of threads and in the number of instructions per thread.

Ü

In a concurrent program, the number of thread interleavings is exponential in the
number of threads and in the number of instructions per thread.

Ü

In a concurrent program, the number of thread interleavings is exponential in the
number of threads and linear in the number of instructions per thread.

Ü

In a concurrent program, the number of thread interleavings is linear in the number
of threads and exponential in the number of instructions per thread.

2



Part 2 [15 points]

Consider the following SIMP program:

while ␣ (!a = !b) do (if !b > 0 then b := !b - 3 else skip)

1. Given the initial store s “ ta ÞÑ 5, b ÞÑ 7u, provide the first nine steps of the evaluation
sequence of the small-step operational semantics. For each transition, indicate the name of
the axiom or rule that you are using. If multiple rules or axioms are used for a single
transition, indicate the one that is at the bottom of the corresponding proof tree.

Abbreviations you may use:

• B stands for (if !b > 0 then b := !b - 3 else skip)

• C stands for ␣ (!a = !b)

xwhile C do B, sy

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

3



ÝÝÝÝÝÝÝÝÝÑ

ÝÝÝÝÝÝÝÝÝÑ

2. For the first use of the “if” rule above, provide a proof tree that shows why you can use this
rule.

3. Which of the following properties does the program execution have or not have. Briefly
explain your answer.
Ü

Divergent
Ü

Terminating
Ü

Blocked

Explanation:

4



4. Suppose we add a new language feature to SIMP, which allows for assigning to two variables
in a single command. For example, c := d := 23 will write the value 23 into both variables
c and d. Similar to single-variable assignments, the right-hand side of the new multi-variable
assignment can be an arbitrary SIMP integer expression.

Extend the transition rules given in the appendix to accommodate the new language feature.
You can adapt any of the existing rules and axioms, and also add new rules or axioms. Give
any added or changes rule or axiom:

5



Part 3 [15 points]

Consider the following JavaScript code:

1 a = 4;

2 b = 7;

3 while (c1) {

4 if (c2) {

5 x = a + b;

6 y = a / b;

7 } else {

8 z = a + b;

9 x = a * b;

10 }

11 }

12 a = 3;

The following is about performing a very busy expressions analysis on the above code. As the
domain of the analysis, consider only non-trivial expressions, i.e., expressions that go beyond a
constant or a single variable.

1. Provide a control flow graph for the code. Each node in the graph should correspond to one
statement. Include entry and exit nodes. Use the line numbers to label the nodes.

6



2. Compute the gen and kill sets for each statement. As above, use line numbers to identify
statements. Use the following template to provide your solution:

Statement s genpsq killpsq

1

2

3

4

5

6

8

9

12

3. Solve the dataflow equations and enter the results into the following template:

Statement s V Bentrypsq V Bexitpsq

1

2

3

4

5

6

8

9

12

7



4. Given the very busy expressions computed above, what optimization(s) might a compiler
apply to the above program?

8



Part 4 [10 points]

Consider the following JavaScript function:

1 function f(i) {

2 var z = 3;

3 while (z > 1) {

4 if (z > i) {

5 i = 7;

6 throw "Error";

7 }

8 z = 0;

9 }

10 }

Suppose to use concolic testing to analyze the function, where i is considered to be a symbolic
variable.

1. Draw the execution tree of the program. If the tree is infinitely large, use “. . . ” to represent
repeating parts of the tree.

9



2. Suppose that concolic testing starts with the following concrete input i = 5. Illustrate the
execution using the following table.

Line After executing the line

State of concrete execution State of symbolic execution Path condition

2

3

4

8

3. What is the formula that concolic testing gives to the SMT solver after the first execution?

4. Give a solution for this formula and describe what will happen if the program gets executed
with the new input.

10



Part 5 [10 points]

Consider the following JavaScript code:

1 var gotIt = false;

2 var paddedPasswd = "xx" + passwd;

3 var knownPasswd = null;

4 if (paddedPasswd === "xxtopSecret") {

5 gotIt = true;

6 knownPasswd = passwd;

7 }

8 addToLogFile(gotIt);

The following is about performing a dynamic information flow analysis on this code. The analysis
considers implicit flows, but not hidden implicit flows. There are two security classes, called secret
and public, with secret being the top of the lattice and public being the bottom of the lattice.
Initially, the value stored in passwd is labeled as secret. The function addToLogFile will expose
data to a publicly visible space, and hence, is considered a sink. The information flow policy is that
only public data should flow into addToLogFile.

1. Consider an execution where passwd is “topSecret”. Show the state of the analysis after each
executed line by providing the labels of gotIt, paddedPasswd, and knownPasswd, as well as
the security stack. If a variable is not defined yet, just indicate a hyphen (“—”) instead of its
label. Use the following as a template to provide your solution.

Line After executing the line

Security label Security stack

gotIt paddedPasswd knownPasswd

1 public — — (empty)

2 public

3

4

5

6

8 (empty)

2. Is there a violation of the security policy? Briefly explain your answer.

11



3. Now, consider an execution where passwd is “fooBar”. Again, show the state of the analysis
using the following template.

Line After executing the line

Security label Security stack

gotIt paddedPasswd knownPasswd

1 public — — (empty)

2

3

4

8

4. Is there a violation of the security policy? Briefly explain your answer.

5. What information about the password is leaked in the second execution?

12



6. How to detect such data leakage in a dynamic information flow analysis? Explain your answer.

13



Part 6 [6 points]

In the lecture, two variants of the Eraser algorithm for detecting data races have been discussed.
While the “simple” variant of the algorithm tracks only the lockset of each shared variable, the
“refined” variant also maintains the state each of variable based on a state machine with four
states (called “virgin”, “exclusive”, “shared”, and “shared-modified”). Provide an example
program that illustrates the need for the refined algorithm. Use the following template to give your
solution. The program does not need to exactly follow the syntax of a real-world programming
language, as long as the presented code is self-explanatory.

1. Example program:

2. Explanation of what happens using the simple variant of Eraser, and why Eraser’s behavior is
suboptimal:

14



3. Explanation of what instead happens using the refined variant of Eraser.

15



Appendix

You may remove the pages of the appendix to allow for easier reading.

For Part 2: Transition rules of small step operational semantics for SIMP
(copied from Fernandez’ book).

16


