
1

Michael Pradel and Koushik Sen

Presented at OOPSLA 2018

DeepBugs: A Learning Approach
to Name-based Bug Detection

2 - 1

Software has bugs

2 - 2

Software has bugs

0.5-25/KLoC
in delivered
software

3

Static Bug Detection

� Lightweight static analysis

� General framework & set of checkers
for specific bug patterns

Error Prone

4

The Problem

� Existing bug detectors miss most
bugs (see our ASE’18 paper)

� Main reasons:
� Bugs are domain-specific
� Bug detectors cover only a small fraction of all

bug patterns

5 - 1

Traditional Approach

How to create a new bug detector?

Time-consuming
process

Program
analysisHuman

expert

5 - 2

Traditional Approach

How to create a new bug detector?

Time-consuming
process

Program
analysis

� Heuristics, e.g., to avoid
spurious warnings

� Carefully tuned algorithms,
e.g., to ensure scalability

Human
expert

6 - 1

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

6 - 2

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

How to get training data?
� Here: Insert artificial bugs via simple program

transformations
� Other options, e.g., from version histories

6 - 3

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

How to represent code?
� Here: Embeddings of natural language

elements in code
� Other options, e.g., token-based, graph-based

7

Benefits of Learning Bug Detectors

Simplifies the problem
� Before: Writing a program analysis

� Now: Providing examples of buggy and correct
code

Catches otherwise missed bugs
� Learns conventions from corpora of existing code

� ML can handle natural language in code, which
expresses domain-specific knowledge

8 - 1

Name-related Bugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

What’s wrong with this code?

8 - 2

Name-related Bugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Incorrect order of arguments

What’s wrong with this code?

9 - 1

Name-related Bugs (2)

for (j = 0; j < params; j++) {

if (params[j] == paramVal) {

...

}

}

What’s wrong with that code?

9 - 2

Name-related Bugs (2)

for (j = 0; j < params; j++) {

if (params[j] == paramVal) {

...

}

}

Should be params.length

What’s wrong with that code?

10

Overview of DeepBugs

Code
corpus

New
code

Classifier

Bugs

Correct code Buggy code

Correct vectors Buggy vectors

Generate training data

Represent code as vectors

Train classifier

Predict bugs in new code

11 - 1

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

11 - 2

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

1) Swapped arguments

setPoint(x, y) setPoint(y, x)

11 - 3

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

2) Wrong binary operator

i <= length i % length

Randomly selected
operator

11 - 4

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

3) Wrong binary operand

bits << 2 bits << next

Randomly selected operand
that occurs in same file

12

Representing Code as Vectors

� Insight: Natural language in identifiers
conveys semantics of code

� Compute word embeddings of
identifier names
� Train Word2Vec* on corpus of code
� Tokens ≈ words

Efficient Estimation of Word Representations in Vector Space
(Mikolov et al., 2013)

13

Word Embeddings

� Known problem in natural language
processing

� Word embeddings
� Continuous vector representation for each

word

� Similar words have similar vectors

14 - 1

Word2Vec

Learn embeddings from corpus of text

� ”You shall know a word by the company it keeps”

� Context: Surrounding words in sentences

14 - 2

Word2Vec

Learn embeddings from corpus of text

� ”You shall know a word by the company it keeps”

� Context: Surrounding words in sentences

Input layer:
Context
words

Hidden
layer

Output layer:
Word

15 - 1

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

15 - 2

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

15 - 3

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Context of x:
function - setPoint - (- , - y -)

16

Example: Embeddings

17 - 1

Code Snippets as Vectors

Concatenate embeddings of names in
code snippet

1) Swapped arguments

someObj.someFun(arg1, arg2)

For each argument: Name, type, and
formal parameter name

17 - 2

Code Snippets as Vectors

Concatenate embeddings of names in
code snippet

2) + 3) Wrong binary operator/operation

i <= length

For each operand:
Name and type

Parent and grand-parent
AST node type

18

Learning the Bug Detector

� Given: Vector representation of code
snippet

� Train neural network:
Predict whether correct or wrong

Vector
representation
of code
snippet

Probability
that correct

Hidden layer

Hidden layer: size=200, dropout=0.2
RMSprop optimizer with binary cross-entropy as loss function

19

Predicting Bugs in New Code

� Represent code snippet as vector

� Sort warnings by predicted probability
that code is incorrect

Vector
representation
of code
snippet

Probability
that correct

Hidden layer

20

Evaluation: Setup

68 million lines of JavaScript code
� 150k files [Raychev et al.]

� 100k files for training, 50k files for validation

Bug detector Examples

Training Validation

Swapped arguments 1,450,932 739,188
Wrong binary operator 4,901,356 2,322,190
Wrong binary operand 4,899,206 2,321,586

21

Accuracy of Classifier

Bug detector Validation accuracy

Swapped arguments 94.70%
Wrong binary operator 92.21%
Wrong binary operand 89.06%

22 - 1

Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100,

function(delay, fn) {

setTimeout(delay, fn);

});

22 - 2

Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100,

function(delay, fn) {

setTimeout(delay, fn);

});

First argument must be
callback function

22 - 3

Examples of Detected Bugs

// From DSP.js

for(var i = 0; i<this.NR_OF_MULTIDELAYS; i++){

// Invert the signal of every even multiDelay

mixSampleBuffers(outputSamples, ...,

2%i==0, this.NR_OF_MULTIDELAYS);

}

22 - 4

Examples of Detected Bugs

// From DSP.js

for(var i = 0; i<this.NR_OF_MULTIDELAYS; i++){

// Invert the signal of every even multiDelay

mixSampleBuffers(outputSamples, ...,

2%i==0, this.NR_OF_MULTIDELAYS);

}

Should be i%2==0

23 - 1

Precision

Bug Inspected Bugs Code False
detector quality pos.

Swapped args. 50 23 0 27
Wrong bin. operator 50 37 7 6
Wrong bin. operand 50 35 0 15

Total 150 95 7 48

23 - 2

Precision

Bug Inspected Bugs Code False
detector quality pos.

Swapped args. 50 23 0 27
Wrong bin. operator 50 37 7 6
Wrong bin. operand 50 35 0 15

Total 150 95 7 48

68% true positives. High, even compared
to manually created bug detectors

24 - 1

Importance of Embeddings

How many true positives do we miss
with random embeddings?

� Misses 11 out of 102 true positives

� Example:

transform = is(obj, value) | is(func, value);

24 - 2

Importance of Embeddings

How many true positives do we miss
with random embeddings?

� Misses 11 out of 102 true positives

� Example:

transform = is(obj, value) | is(func, value);

Bitwise OR for logical OR of booleans:
Inefficient and error-prone

25

Efficiency

� Data extraction and learning:
28 minutes – 59 minutes
(depending on bug detector)

� Prediction of bugs:
Less than 20ms per JavaScript file

48 Intel Xeon E5-2650 CPU cores, 64GB of memory, 1 NVIDIA
Tesla P100 GPU

26

Open Challenges

� Bug detection based on other code
representations
� Token-based, graph-based, etc.
� One representation for many bug patterns

� Support more bug patterns
� Learn code transformations from version

histories
� A single model for multiple bug patterns

27

Conclusion

� Bug detection as a learning problem
� Classify code as buggy or correct

� DeepBugs: Name-based bug detector
� Exploit natural language information to detect

otherwise missed bugs
� Learning from seeded bugs yields classifier

that detects real bugs

DeepBugs: A Learning Approach to Name-based Bug Detection
(Pradel & Sen, OOPSLA’18)

