
Practical Program Analysis
Milestone Discussion

2020-01-10
Prof. Michael Pradel, Daniel Lehmann

Agenda

● Course Organization (5 mins)

● Project Milestone Discussion (60 mins)
- Task by Task
- Common questions
- Concepts recap: What do we need for concolic execution of Wasm?
- No ready-to-copy solutions, but interactive Q&A with you

● Final Submission Tasks (20 mins)

Course Organization
- Milestone submission: yesterday (I cloned your repos)

- Final submission: February 9 (ca. 4 weeks from now)

- Presentations: week of February 10 to 14
- 20% of your final grade
- 15 mins talk + 10 mins Q&A
- Every team member should present a part
- Scheduling a date and time slot: via email (more details later)
- Contents:

- What were the goals of this project?
- Presenting your project: concepts that you used, challenges you had
- Live demo (make sure it works, plan for about ~5 minutes)

Milestone Discussion

A Note on Plagiarism

- Copying of other people’s code is not permitted

- Neither is copying of examples directly from tutorials

- See also https://www.student.uni-stuttgart.de/pruefungsorganisation/
document/Leitfaden_Plagiatspraevention_Studierende.pdf (in German)

https://www.student.uni-stuttgart.de/pruefungsorganisation/document/Leitfaden_Plagiatspraevention_Studierende.pdf
https://www.student.uni-stuttgart.de/pruefungsorganisation/document/Leitfaden_Plagiatspraevention_Studierende.pdf

- Just to get you started, should have been easy

- Both groups used Z3 from https://rise4fun.com/z3
- You will need to install it locally for the next step!
- Did anybody do that? Were there any problems with that?

https://rise4fun.com/z3

- Written by hand ✅
- One group started with C programs (cool, but not required here)

- Less than 30 instructions, but not trivial ✅

- Top-level comment why this test case is interesting ❌
- “later used for testing your concolic execution tool”

- What is instruction coverage (vs. branch coverage or instruction counting)? When is it used?

- Total instructions: Wasabi.module.info.functions[1].instrCount
- Some engineering required:

1. Instrument binaries in programs/ dir (e.g., by adding call to wasabi to programs/build.sh)
2. Load generated wasabi.js file and instrumented wasm file in harness.js
3. Run instrumented binary instead of original one

- Analysis itself is simple: all hooks, adding location.instr to a Set()

- Conceptually easy: just think of some simple logical formulas

- Syntax maybe a bit weird
- SMTlib boilerplate: declare-const, check-sat, get-model
- Parentheses + prefix notation

- Write some examples together

(declare-const arg0 Int)

(assert (= (+ arg0 0) 0))

(check-sat)

(get-model)

- Recap: How is WebAssembly executed? What are path constraints?

- We do two examples together

Recap: WebAssembly Execution
- WebAssembly is a stack machine

- There is an implicit “operand stack”
- All instructions pop their inputs from the stack
- And push their results onto the stack

- Locals: first N locals are the N function
arguments, rest are like local variables

- Let’s evaluate the right program by hand
- Draw explicit operand stack
- Draw locals, indexed by their number

(func (export "main") (param i32)
 local.get 0
 i32.eqz
 if
 i32.const 0
 call $print
 else
 i32.const 1
 call $print
 end
)

Recap: Path Constraints
- Concolic testing wants to explore new

execution paths in a program

- Execution path is determined by all
branches taken

- For an if: was the condition true or false?

- Express branch condition as a logical
formula in terms of the program inputs

- Here: program = 1 function,
inputs = function arguments

(func (export "main") (param i32)
 local.get 0
 i32.eqz
 if
 i32.const 0
 call $print
 else
 i32.const 1
 call $print
 end
)

Concolic Execution for WebAssembly
- Similar to regular execution

- Uses also operand stack and locals etc.

- But: logical formulas (“symbolic state”)
instead of concrete values

- One “symbolic data structure” for each data
structure during concrete execution

- Symbolic operand stack
- Symbolic locals array
- (Symbolic globals, symbolic memory)

- Add to path constraint for each branch

- Together on the blackboard

(func (export "main") (param i32)
 local.get 0
 i32.eqz
 if
 i32.const 0
 call $print
 else
 i32.const 1
 call $print
 end
)

add-eqz.wat

(func (export "main") (param i32 i32) (result)
 local.get 0
 local.get 1
 i32.add
 i32.eqz
 if
 i32.const 0
 call $print
 else
 i32.const 1
 call $print
 end
)

Step 1: Which path is taken when all inputs
are zero?

Step 2: Start with a template SMT2 file.
(See task 4)

Step 3: Go through instructions step-by-step.
What does each instruction do with its
operands?
When we reach the if: translate into formula.

locals-2.wat

(func (export "main") (param i32) (result)
 (local i32)
 local.get 0
 i32.const 42
 i32.sub
 local.set 1
 local.get 0
 local.get 1
 i32.add
 i32.eqz
 if
 i32.const 0
 call $print
 else
 i32.const 1
 call $print
 end
)

Task 6: Implement what we just did
- symbolicStack array

- Strings of SMT formulas
- Initially empty
- On binary instruction, such as i32.add: pop two values, build result formula, push result

- symbolicLocals array
- Strings of SMT formulas
- First N entries are initialized, e.g., to “arg0”
- get.local N: push contents symbolicLocals[N] onto symbolicStack
- set.local N: pop value from symbolicStack, write to symbolicLocals[N]

- pathConstraint array
- Whenever if is reached: pop value (=formula) from symbolicStack, wrap in (not …) if condition

was false, add to pathConstraint array

- After execution: and-together all values in pathConstraint, add SMT2
boilerplate (declare-const, get-model etc.)

Your Questions

Final Submission Tasks

