Practical Program Analysis
Milestone Discussion

2020-01-10
Prof. Michael Pradel, Daniel Lehnmann

Agenda

e Course Organization (5 mins)

e Project Milestone Discussion (60 mins)

- Task by Task

- Common questions

- Concepts recap: What do we need for concolic execution of Wasm?
- No ready-to-copy solutions, but interactive Q&A with you

e Final Submission Tasks (20 mins)

Course Organization

- Milestone submission: yesterday (I cloned your repos)
- Final submission: February 9 (ca. 4 weeks from now)

- Presentations: week of February 10 to 14

- 20% of your final grade

- 15 mins talk + 10 mins Q&A

- Every team member should present a part

- Scheduling a date and time slot: via email (more details later)

- Contents:
- What were the goals of this project?
- Presenting your project: concepts that you used, challenges you had
- Live demo (make sure it works, plan for about ~5 minutes)

Milestone Discussion

A Note on Plagiarism

- Copying of other people’s code is not permitted

- Neither is copying of examples directly from tutorials

- See also https://www.student.uni-stuttgart.de/pruefungsorganisation/
document/Leitfaden_Plagiatspraevention_Studierende.pdf (in German)

https://www.student.uni-stuttgart.de/pruefungsorganisation/document/Leitfaden_Plagiatspraevention_Studierende.pdf
https://www.student.uni-stuttgart.de/pruefungsorganisation/document/Leitfaden_Plagiatspraevention_Studierende.pdf

Task 1: Setup

e |nstall WABT, Wasabi, Z3, Node.js, NPM or Yarn, and a recent browser that can run WebAssembly.

® |nstall the dependencies, then run the webserver in server/ , then go to http://localhost:8000 to check out the test
harness.

- Just to get you started, should have been easy

- Both groups used Z3 from https://rise4fun.com/z3
- You will need to install it locally for the next step!
- Did anybody do that? Were there any problems with that?

https://rise4fun.com/z3

> Task 2: Test Programs

e Write at least 5 programs in the WebAssembly text format, that are used later for testing your concolic execution tool.
® Putthemin project/programs/milestone-tests/ .

® They should be less than 30 instructions each. (Smaller, focused tests are easier to understand. We can try larger
programs later.)

® They should be non-trivial. (E.g., if they have zero control-flow constructs, that would be pointless because there is
only a single path to explore.)

® Fach .wat program should contain one top-level comment that explains why this test case is interesting. (E.g.
"Tests whether our engine can handle paths of length > 1, because this test contains two nested ifs.")

- Written by hand
- One group started with C programs (cool, but not required here)

- Less than 30 instructions, but not trivial

- Top-level comment why this test case is interesting
- “later used for testing your concolic execution tool”

> Task 3: Instruction Coverage

e Ultimately, your concolic testing tool should produce inputs that explore the program "as good as possible". For that
we need to measure coverage, given a program and a concrete input.

e Implement a Wasabi analysis that measures instruction coverage.
O Side-question (you don't need to write down an answer, just think about it): What other types of coverage are
there except instruction coverage?

O Subtask: How do you know what 100% coverage is for a given program?
® See the analysis template in project/analysis/coverage.js .

® Make sure that when running any program with project/harness.html , it reports a coverage in the appropriate part
of the page.

What is instruction coverage (vs. branch coverage or instruction counting)? When is it used?

Total instructions: Wasabi .module.info.functions [1].instrCount

Some engineering required:
1. Instrument binaries in programs/ dir (e.g., by adding call to wasabi to programs/build.sh)
2. Load generated wasabi.js file and instrumented wasm file in harness.js
3. Run instrumented binary instead of original one

Analysis itself is simple: all hooks, adding 1ocation.instr toa Set ()

Task 4: Z3 Warmup

e Ultimately, your concolic testing tool will generate path constraints (= formulas where the program's inputs are
symbolic variables) that are solved by an SMT solver. Here, you get to know Z3 (an SMT solver) by manually writing
some inputs for it (= formulas in the SMT-lib 2.0 format) and letting Z3 solve them.

e Write 5 simple inputs for Z3 (as .smt2 files), e.g., formulas using propositional logic and integer arithmetic. Make
sure they are valid, i.e., give them to Z3 to solve.

® Put those 5 files in tasks/milestone/z3-warmup/ .

® See tasks/milestone/z3-warmup/example.smt2 for an example representation of the formula x > 0 & y > 0 & x
+ y < 42 . Solving that formula with Z3 gives:

Conceptually easy: just think of some simple logical formulas declare-const arg0 Int)

Syntax maybe a bit weird
- SMTIib boilerplate: declare-const, check-sat, get-model
- Parentheses + prefix notation

(
(assert (= (+ arg0 0) 0))
(check-sat)

(

get-model)

Write some examples together

Task 5: Manual Path Constraints

® The programs you analyze are in WebAssembly, but Z3 only understands its own format (that we got to know in the
previous task). Before implementing this in your automated tool, you should practice generating path constraints from
a program by hand.

® For the 5 programs in project/programs/basic/ , manually write down the path constraints as Z3 input files, if the
program would have received o for all its inputs.

O First step: What path did the program take, given these inputs?

® Putthe .smt2 filesin tasks/milestone/manual-path-constraints/ , with the basename of your .smt2 files
corresponding to the basename of the program.

® See tasks/milestone/manual-path-constraints/example.smt2 for an example path constraint of the program
basic/if-eqz.wat if it executed the else branch of the if (i.e., where the input was not zero).

Recap: How is WebAssembly executed? What are path constraints?

We do two examples together

Recap: WebAssembly Execution

- WebAssembly is a stack machine
- There is an implicit “operand stack”
- Allinstructions pop their inputs from the stack
- And push their results onto the stack

(func (export "main") (param 132)
local.get O
132 .eqgz
if

- Locals: first N locals are the N function i32.const 0

i ; 11 int
arguments, rest are like local variables elseca prin

- Let’s evaluate the right program by hand i32.const 1

- Draw explicit operand stack call Sprint

- Draw locals, indexed by their number end

Recap: Path Constraints

- Concolic testing wants to explore new

. . (func (export "main") (param 132)
execution paths in a program

local.get O

: : : 132.
- Execution path is determined by all %f o
1
branches taken i32.const 0
- For an if: was the condition true or false? call $print
fy . else
- Express branch condition as a logical .
_ _ 132.const 1
formula in terms of the program inputs call $print

- Here: program = 1 function, end

inputs = function arguments

Concolic Execution for WebAssembly

- Similar to regular execution

(func (export "main") (param 132)
- Uses also operand stack and locals etc.

local.get O
- But: logical formulas (“symbolic state”) i32.eqz

instead of concrete values o
- One “symbolic data structure” for each data
structure during concrete execution
- Symbolic operand stack
- Symbolic locals array
- (Symbolic globals, symbolic memory)

i32.const 0

call Sprint
else

i32.const 1

call S$print

end

- Add to path constraint for each branch

- Together on the blackboard

add—-eqgz.wat

(func (export "main") (param 132 132) (result)

local.get O
local.get 1

132.add Step 1:
132 .eqz
if

i32.const 0 Step 2:

call Sprint
else

i32.const 1
, Step 3:
call Sprint

end

Which path is taken when all inputs
are zero?

Start with a template SMT2 file.
(See task 4)

Go through instructions step-by-step.
What does each instruction do with its
operands?

When we reach the if: translate into formula.

locals-2.wat

(func (export "main") (param 132) (result)
(local 132)
local.get O
132 .const 42
i32.sub
local.set 1
local.get O
local.get 1
i32.add
132 .eqz
if

132 .const O

call S$print
else

i32.const 1

call Sprint
end

Task 6: Implement what we just did

symbolicStack array

Strings of SMT formulas
Initially empty
On binary instruction, such as 132 . add: pop two values, build result formula, push result

symbolicLocals array

Strings of SMT formulas

First N entries are initialized, e.g., to “arg0”

get.local N push contents symbolicLocals[N]onto symbolicStack
set.local N pop value from symbolicStack, write to symbolicLocals [N]

pathConstraint array

Whenever if is reached: pop value (=formula) from symbolicStack wrapin (not ..) if condition
was false, add to pathConstraintarray

After execution: and-together all values in pathConstraint, add SMT2
boilerplate (declare-const, get-model etc.)

Your Questions

Final Submission Tasks

