
59

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Type Systems (Part 3)

60

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus

61

Lambda Calculus

■ Core language that captures the
essence of most PLs

■ Serves both as

□ A simple PL one could (in principle) develop in

□ A mathematical object for formally reasoning

about PLs

62

Functional Abstraction

■ Key feature: Procedural (or functional)
abstraction

■ Everything is a function, e.g.,

□ Arguments accepted by functions

□ Values returned by functions

■ Notation: λn . ⟨result⟩
□ Means “The function that, for each n, yields

⟨result⟩”

64

65

66

67

67 - 1

Quiz: Lambda-Calculus

What do the following terms evaluate to?

(a) (λz . succ z) 0

(b) λx . true

(c) ((λa . λb . if a then b else a) false) true

67 - 2

Quiz: Lambda-Calculus

What do the following terms evaluate to?

(a) (λz . succ z) 0

(b) λx . true

(c) ((λa . λb . if a then b else a) false) true

Function that computes
the successor of a z,
applied to 0, yields 1

67 - 3

Quiz: Lambda-Calculus

What do the following terms evaluate to?

(a) (λz . succ z) 0

(b) λx . true

(c) ((λa . λb . if a then b else a) false) true

Function that computes
the successor of a z,
applied to 0, yields 1

Function that always
returns true

67 - 4

Quiz: Lambda-Calculus

What do the following terms evaluate to?

(a) (λz . succ z) 0

(b) λx . true

(c) ((λa . λb . if a then b else a) false) true

Function that computes
the successor of a z,
applied to 0, yields 1

Function that always
returns true

Applying λa... to false yields another function
λb.... Applying that function to true yields false.

68 - 1

Let’s Add Types

■ As for arithmetic expressions, syntax
allows both

□ Meaningful programs

• λx . x true

□ Meaningless programs

• true λx . x

• λx . y

68 - 2

Let’s Add Types

■ As for arithmetic expressions, syntax
allows both

□ Meaningful programs

• λx . x true

□ Meaningless programs

• true λx . x

• λx . y

Cannot apply true because
it’s not a function

y is not bound

68

69

71

Typing Context

■ Extend typing relation

□ So far, binary relation t : T

□ Now, ternary relation Γ ⊢ t : T

• Means “Term t has type T

under the assumptions in Γ”

□ Γ is the typing context (or type environment)

• Set of assumptions about types of free variables

• If no assumptions, we write ⊢ t : T

72 - 1

Quiz: Typed Lambda-Calculus

Under which context Γ does the
following hold: Γ ⊢ f x : Bool

72 - 2

Quiz: Typed Lambda-Calculus

Under which context Γ does the
following hold: Γ ⊢ f x : Bool

Answer:
f : Bool → Bool, x : Bool

70

71

75

Quiz: Type Derivation (2)

Show (by drawing the derivation tree)
that the following term has the indicated
type:

f : Bool → Bool ⊢
f (if false then true else false) : Bool

How many times do you have to
write “Bool”?

72

73

78

Outlook

■ Many extension to the simple, typed
λ-calculus

□ E.g., Tuples, records, exceptions, subtyping

■ See book Types and Programming
Languages by Benjamin Pierce

79

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus ✔

