
33

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Type Systems (Part 2)



34

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus



35

Type Compatibility

■ Check whether combining two values
is valid according to their types

■ “Combining” may mean
□ Assignment: Are left-hand side and right-hand

side compatible?

□ Operators: Are operands compatible with the

operator and with each other?

□ Function calls: Are actual arguments and

formal parameters compatible?



36

Compatible ̸= Equal

Most PLs: Types may be compatible
even when not the same

Example (C):
double d = 2.3;
float f = d * 2;
int i = f;
printf("%d\n", i);



37

Compatible ̸= Equal (2)

■ Rules of PL define which types are
compatible

■ Examples of rules

□ Can assign subtype to supertype

□ Different number types are compatible with

each other

□ Collections of same type are compatible, even

if length differs



38

Type Conversions

When types aren’t equal, they must be
converted

■ Option 1: Cast = explicit type conversion

□ Programmer changes value’s type from T1 to T2

■ Option 2: Coercion = implicit type conversion

□ PL allows values of type T1 in situation where type

T2 expected



39

Runtime Behavior of Conversions

Three cases:

■ Types are structurally equivalent:

Conversion is only conceptual, no code generated

■ Types have different sets of values, but are
represented in the same way in memory:

May need check that value is in target type

■ Different low-level representations:

Need special instructions for conversion



47



41 - 1

Coercions in C

■ Most primitive types are coerced
whenever needed

■ Some coercions cause information
loss
□ float to int: Loose fraction

□ int to char: Causes char to overflow (and

will give unexpected result)

■ Enable compiler warnings to avoid
surprises



41 - 2

Coercions in C

■ Most primitive types are coerced
whenever needed

■ Some coercions cause information
loss
□ float to int: Loose fraction

□ int to char: Causes char to overflow (and

will give unexpected result)

■ Enable compiler warnings to avoid
surprises

Source: geeksforgeeks.org



43

Coercions in JavaScript

■ Almost all types are coerced when
needed
□ Rationale: Websites shouldn’t crash

■ Some coercions make sense:
□ "number:" + 3 yields "number:3"

■ Many others are far from intuitive:
□ [1, 2] << "2" yields 0

More details and examples:
The Good, the Bad, and the Ugly: An Empirical Study of Implicit Type
Conversions in JavaScript. Pradel and Sen. ECOOP 2015



44 - 1

Quiz: Coercions in C

What does the following C code print?

float d = 1027.23;
int l = d;
d = l;
char c = d;
bool b = c;

printf("d=%f, ", d);
printf("l=%d, ", l);
printf("c=%d, ", c);
printf("b=%d\n", b);



44 - 2

Quiz: Coercions in C

What does the following C code print?

float d = 1027.23;
int l = d; // coercion to integer 1027
d = l; // fraction lost, d is 1027.0
char c = d; // doesn’t fit; coerced to 3
bool b = c; // coercion to true

printf("d=%f, ", d); // 1027.00000
printf("l=%d, ", l); // 1027
printf("c=%d, ", c); // 3
printf("b=%d\n", b); // 1



45

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus



46

Formally Defined Type Systems

■ Type systems are
□ implemented in a compiler

□ formally described

□ and sometimes both

■ Active research area with dozens of
papers each year
□ Focus: New languages and strong type

guarantees



48



48

Not All Expressions Make Sense

■ Only some expressions can be
evaluated

■ Others don’t make sense
□ Implementation of the language would get

stuck or throw a runtime error



49



50

Types to the Rescue

■ Use types to check whether an
expression is meaningful

□ If term t has a type T , then its evaluation won’t

get stuck

□ Written as t : T

■ Two types

□ Nat .. natural numbers

□ Bool .. Boolean values

”has type”



50



53

Type Checking Expressions

■ Typing relation: Smallest binary
relation between terms and types that
satisfies all instances of the rules

■ Term t is typeable (or well typed) if
there is some T such that t : T

■ Type derivation: Tree of instances of
the typing rules that shows t : T



51



52



55

Quiz: Typing Derivation

Find the typing derivation for the
following expression:

if false then (succ(pred 0)) else (succ 0)

How many axioms and rules do you need
to apply?



53



57

Another Example

Try to find a typing derivation for the
following expression:

if true then true else 0



54


