
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Type Systems (Part 1)



2

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus



3 - 1

Quiz: JavaScript Expressions

What values do these JavaScript
expressions evaluate to?

"" == 0
1 == true
"true" == 1
false == "false"



3 - 2

Quiz: JavaScript Expressions

What values do these JavaScript
expressions evaluate to?

"" == 0 // true
1 == true // true
"true" == 1 // false
false == "false" // false



3 - 3

Quiz: JavaScript Expressions

What values do these JavaScript
expressions evaluate to?

"" == 0 // true
1 == true // true
"true" == 1 // false
false == "false" // false

Number and string: String
is coerced into a number
(here: 0 and NaN)



3 - 4

Quiz: JavaScript Expressions

What values do these JavaScript
expressions evaluate to?

"" == 0 // true
1 == true // true
"true" == 1 // false
false == "false" // false

Number and boolean:
Boolean gets converted
to number (here: 1)



3 - 5

Quiz: JavaScript Expressions

What values do these JavaScript
expressions evaluate to?

"" == 0 // true
1 == true // true
"true" == 1 // false
false == "false" // false

Boolean and another type:
■ Boolean gets coerced to a number (here: 0)
■ String also get coerced to a number (here: NaN)
■ The two numbers differ



4

Types

■ Most PLs: Expressions and memory
objects have types

■ Examples
□ Assignment x=4 (implicitly) says x has a

number type

□ Declaration int n; says n has integer type

□ Expression a+b has a type, which depends on

the type of a and b

□ new X() has a type



5

Why Do We Need Types?

Reason 1: Provide context for operations

■ Meaning of a+b depends on types of a and b

□ E.g., addition vs. string concatenation

■ Meaning of new x depends in the type of x

□ E.g., which initialization code to call?

PL implementation uses this context
information



6

Why Do We Need Types?

Reason 2: Limit valid operations

■ Many syntactically valid operations don’t make any

sense

□ Adding a character and a record

□ Computing the logarithm of a set

Helps developers find bugs early



7

Why Do We Need Types?

Reason 3: Code readability and
understandability

■ Types = stylized documentation

■ Makes maintaining and extending code easier

But: Sometimes, types make code harder
to write



8

Why Do We Need Types?

Reason 4: Compile-time optimizations

■ Compiler knows that some behavior is impossible

□ E.g., assignment of type T1 may not influence values

of type T2

Works both for explicitly specified and
implicitly inferred types



9

Bits Are Untyped

■ (Most) hardware stores and computes
on raw bits

□ Bits may be code, integer data, addresses, etc.

■ (Most) assembly languages are
untyped

□ Operation of any kind can be applied to values

at arbitrary locations



10

Type Systems

■ Definition of types and their
association with PL constructs
□ Every PL construct that has/refers to a value

has a type (e.g., named constants, variables,

record fields, functions)

■ Rules for
□ Type equivalence

□ Type compatibility

□ Type inference



11 - 1

Type Checking

Ensure that program obeys the type
compatibility rules

Example (Java):

int a = 3;
String b = a - 2;



11 - 2

Type Checking

Ensure that program obeys the type
compatibility rules

Example (Java):

int a = 3;
String b = a - 2;

Type error: Can’t assign int
value to String variable



12

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus



13

Strongly Typed PLs

PL implementation enforces:
Operations only on values of proper type

■ Most PLs since 1970s

■ C is mostly strongly typed

□ Exceptions, e.g.,:

• Subroutines with variable number of parameters

• Interoperability of pointers and arrays



14

Statically Typed PLs

Strongly typed and checked at
compile-time

■ Strictly speaking, practically no PL is statically

typed

□ E.g., Java: Upcasts and reflection allow for runtime

type errors

■ In practice, means ”mostly statically typed”



16

Dynamically Typed PLs

Type checking is delayed until runtime

■ Type errors found only later in development

process

■ Common in “scripting languages”, e.g., JavaScript

and Python

■ Note: Every value has a type and type errors

manifest as runtime errors



17

Gradual Typing

Middleground between statically and
dynamically typed PLs

■ Annotating types is optional

□ Can quickly write code and add types later

■ Static type checker warns about errors obvious

from the available types

□ No guarantee to find all type errors



19 - 1

Quiz: * Typed PLs

Which of the following statements is
true?

■ In a dynamically typed language, no type errors

can occur.

■ In practical, statically typed languages, all type

errors are caught before running the code.

■ Gradual typing let’s programmers choose which

types to annotate.

■ Strong typing exists only in statically typed PLs.



19 - 2

Quiz: * Typed PLs

Which of the following statements is
true?

■ In a dynamically typed language, no type errors

can occur.

■ In practical, statically typed languages, all type

errors are caught before running the code.

■ Gradual typing let’s programmers choose which

types to annotate.

■ Strong typing exists only in statically typed PLs.



20

Polymorphism

■ Greek origin: “Having multiple forms”
■ Two kinds

□ Parametric polymorphism: Code takes (set of)

type(s) as parameter

• E.g., generics in Java, containers in C++

□ Subtype polymorphism: Extending of refining a

supertype

• E.g., subclasses in Java or C++



23 - 1

Polymorphic Variables

In some PLs, a single variable may refer
to objects of completely different types

Example (pseudo language):

a = "abc"
b = 42
a = b
a = "def"



23 - 2

Polymorphic Variables

In some PLs, a single variable may refer
to objects of completely different types

Example (pseudo language):

a = "abc" // a holds a string
b = 42 // b holds an int
a = b // a holds an int
a = "def" // a holds a string (again)



23 - 3

Polymorphic Variables

In some PLs, a single variable may refer
to objects of completely different types

Example (pseudo language):

a = "abc" // a holds a string
b = 42 // b holds an int
a = b // a holds an int
a = "def" // a holds a string (again)

Type-correct in most dynamically typed
(and even some statically typed) PLs



24

Special Types and Values

■ void type: Indicates the absence of a
type and has only one (trivial) value

■ null value: Means “does not hold a
value of its type”

■ Option types: Indicates that the value
may or may not hold a value of a
specific type

□ E.g., Option[int] in Python means int or

None



25

Overview

■ Introduction

■ Types in Programming Languages

■ Type Equivalence

■ Type Compatibility and Conversions

■ Formally Defined Type Systems

□ Arithmetic Expressions

□ Lambda Calculus



26

Type Equivalence

Prerequisite for type checking:
Clarify whether two types are equivalent

Two approaches

■ Structural equivalence

□ Same structure means same type

□ Compares structure recursively

■ Name equivalence (aka nominal equivalence)

□ Same type name means same type



27 - 1

Example: OCaml

Objects: Structurally typed by the names
and types of their methods



27 - 2

Example: OCaml

Objects: Structurally typed by the names
and types of their methods

let x =

object

val mutable x = 5

method get_x = x

method set_x y = x <- y

end;;

Creates an object
with one field and
two methods



27 - 3

Example: OCaml

Objects: Structurally typed by the names
and types of their methods

let x =

object

val mutable x = 5

method get_x = x

method set_x y = x <- y

end;;

Creates an object
with one field and
two methods

let y =

object

method get_x = 2

method set_x y =

Printf.printf "%d\n" y

end;;

Creates an object
with two methods



27 - 4

Example: OCaml

Objects: Structurally typed by the names
and types of their methods

let x =

object

val mutable x = 5

method get_x = x

method set_x y = x <- y

end;;

let y =

object

method get_x = 2

method set_x y =

Printf.printf "%d\n" y

end;;

x = y;; Type-correct assignment



28

Variation Across Languages

■ Do names matter?

□ Same memory representation, but differently

named

□ E.g., different field names in a record

■ Does order matter?

□ Different memory representation, but lossless

reordering possible

□ E.g., same fields but in different order



29 - 1

Limitation of Structural Equivalence

■ Cannot distinguish different concepts
that happen to be represented the
same way

■ Example (Pascal-like syntax):

type student = record
name, address : string;
age: integer

end;

type school = record
name, address : string;
age: integer

end;
vs.



29 - 2

Limitation of Structural Equivalence

■ Cannot distinguish different concepts
that happen to be represented the
same way

■ Example (Pascal-like syntax):

type student = record
name, address : string;
age: integer

end;

type school = record
name, address : string;
age: integer

end;
vs.

{ This is allowed: }
x : student; y : school;
x := y;



30

Name Equivalence

■ Types with different names are
different

■ Assumption: Programmer wants it
that way

■ Used in many modern languages, e.g.,
Java



31

Limitations of Name Equivalence

■ Alias types cause difficulties

■ Example:

{ Here, we want both types to be the same }
type stack_element = integer;

{Here, we want distinct types,
to prevent mixed computations}

type celsius = real;
type fahrenheit = real;



32 - 1

Quiz: Type Equivalence

type foo = record
x : integer;
y : integer

end;

type bar = record
m : integer;
n : integer

end;

a : foo;
b : bar;

a := b;
b := a;

Is this pseudo-code
type-correct in a

(a) PL with structural
type equivalence,

(b) PL with nominal
type equivalence?



32 - 2

Quiz: Type Equivalence

type foo = record
x : integer;
y : integer

end;

type bar = record
m : integer;
n : integer

end;

a : foo;
b : bar;

a := b;
b := a;

Is this pseudo-code
type-correct in a

(a) PL with structural
type equivalence,

(b) PL with nominal
type equivalence?

→ Yes

→ No


