
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Syntax (Part 1)

2

Motivation

■ Goal:
Specify a programming language

□ What code is part of the language?

□ What is the meaning of a piece of code?

■ Important for both developers and
tools

■ In contrast: Natural languages not
formally specified

3 - 1

Syntax vs. Semantics

Structure of
code

Meaning of
code

Example:

Grammar to define a language:

digit → 0 | 1 | ... | 9
non zero digit → 1 | ... | 9
number → non zero digit digit*

Could mean

■ Natural numbers

■ Days of a 10-day

week

■ Colors

■ ...

3 - 2

Syntax vs. Semantics

Structure of
code

Meaning of
code

Example:

Grammar to define a language:

digit → 0 | 1 | ... | 9
non zero digit → 1 | ... | 9
number → non zero digit digit*

Could mean

■ Natural numbers

■ Days of a 10-day

week

■ Colors

■ ...Focus of this and next lecture

4 - 1

Syntax of Different PLs

Common: Different syntax, same semantics

if [$foo -gt 100]
then
...

fi

if (foo > 100) {
...

}

Java: Bash:

4 - 2

Syntax of Different PLs

Common: Different syntax, same semantics

Sometimes: Same syntax, different semantics

if [$foo -gt 100]
then
...

fi

if (foo > 100) {
...

}

Java: Bash:

if ("abc" != 5) {
...

}

Java: JavaScript:

4 - 3

Syntax of Different PLs

Common: Different syntax, same semantics

Sometimes: Same syntax, different semantics

if [$foo -gt 100]
then
...

fi

if (foo > 100) {
...

}

Java: Bash:

if ("abc" != 5) {
...

}

Java: JavaScript:

Branch is
executed

Type error at
compile time

10

6

Overview

■ Specifying syntax

□ Regular expressions

□ Context-free grammars

■ Scanning

■ Parsing

7

Tokens

Basic building blocks of every PL

■ Keywords, identifiers, constants, operators

■ Think: ”Words” of the language

Example: C has more than 100 tokens

■ Keywords, e.g., double, if, return, struct

■ Identifiers, e.g., my var, printf

■ Literals, e.g., 6.022e23, ’x’

■ Punctuators, e.g., (, }, &&

8 - 1

Regular Expressions

■ Used to specify tokens
■ A regular expression is one of:

□ A character

□ The empty string ϵ

□ The concatentation of two regular expressions

□ Two regular expressions separated by |

• Means a string generated by one or the other

□ A reg. expression followed by the Kleene star *

• Means zero or more repetitions

8 - 2

Regular Expressions

■ Used to specify tokens
■ A regular expression is one of:

□ A character

□ The empty string ϵ

□ The concatentation of two regular expressions

□ Two regular expressions separated by |

• Means a string generated by one or the other

□ A reg. expression followed by the Kleene star *

• Means zero or more repetitions

No recursion!

11

10 - 1

Quiz

Which of the following strings is
accepted by the regular expression
number?

■ -23

■ 000

■ 7.003E-5

■ 0.123.45

■ 2e3

■ 12+E

10 - 2

Quiz

Which of the following strings is
accepted by the regular expression
number?

■ -23 ✘

■ 000 ✔

■ 7.003E-5 ✔

■ 0.123.45 ✘

■ 2e3 ✔

■ 12+E ✘

12

12 - 1

Identifiers in Popular PLs

Different PLs allow different identifiers

■ Case-sensitive vs. case-insensitive
□ E.g., foo, Foo, and FOO are the same in Ada and

Common Lisp, but not in Perl and C

■ Letters and digits: Almost always allowed

■ Underscore: Allowed in most languages

In addition to syntax rules: Conventions

■ E.g., Java: ClassName, variableName

12 - 2

Identifiers in Popular PLs

Different PLs allow different identifiers

■ Case-sensitive vs. case-insensitive
□ E.g., foo, Foo, and FOO are the same in Ada and

Common Lisp, but not in Perl and C

■ Letters and digits: Almost always allowed

■ Underscore: Allowed in most languages

In addition to syntax rules: Conventions

■ E.g., Java: ClassName, variableName

Know the rules of the language you use!

13

White space in Popular PLs

Free format vs. formatting as syntax

■ Spaces and tabs sometimes matter

□ E.g., in Python

■ Line breaks sometimes matter

□ E.g., to separate statements in JavaScript or Python

14

Demo

[demos/whitespace: show both stmts on
one line; insert semi-colon; show not
indenting print (after inverting
condition)]

15

Overview

■ Specifying syntax

□ Regular expressions

□ Context-free grammars

■ Scanning

■ Parsing

13

17 - 1

Context-free Grammars

≈ Regular expressions + Recursion

Example: Arithmetic expressions
expr → id | number | expr op expr | (expr)
op → + | - | * | /

17 - 2

Context-free Grammars

≈ Regular expressions + Recursion

Example: Arithmetic expressions
expr → id | number | expr op expr | (expr)
op → + | - | * | /

Non-terminals

17 - 3

Context-free Grammars

≈ Regular expressions + Recursion

Example: Arithmetic expressions
expr → id | number | expr op expr | (expr)
op → + | - | * | /

Non-terminals Terminals =
tokens of the PL

17 - 4

Context-free Grammars

≈ Regular expressions + Recursion

Example: Arithmetic expressions
expr → id | number | expr op expr | (expr)
op → + | - | * | /

Recursion allows for
nesting expressions

14

15

20

Derivations

Create concrete strings from the
grammar

■ Begin with start symbol

■ Repeat until no non-terminals remain:

□ Choose non-terminal and a production with this

non-terminal on the left-hand side

□ Replace it with right-hand side of the production

(choose one option if multiple options)

16

22

Parse Trees

Tree-structured representation of a
derivation

■ Root = Start symbol

■ Leaf nodes = Tokens that result from derivation

■ Intermediate nodes = Application of a production

17

24

Not All Grammars are Equal

Each language has infinitely many
grammars

Some grammars are ambiguous

■ A single string may have multiple derivations

■ Unambiguous grammars facilitate parsing

Grammar should reflect the internal
structure of the PL

■ E.g., associativity and precedence of operators

25

Example: Revised Grammar

expr → term | expr add op term

term → factor | term mult op factor

factor → id | number | - factor | (expr)

add op → + | -

mult op → * | /

A better version of the grammar of
arithmetic expressions:

26

Quiz: Context-free Grammars

Draw the parse tree of
foo - (bar * bar)

with the revised grammar. How many
nodes and edges does the tree have?

18

28

Overview

■ Specifying syntax

□ Regular expressions

□ Context-free grammars

■ Scanning

■ Parsing

□ Top-down parsing

□ Bottom-up parsing

19

30

Implementing a Scanner

General idea

■ Read one character at a time

■ Whenever a full token is recognized, return it

■ When no token can be recognized, report an error

■ Sometimes, need to look multiple characters

ahead to determine next token

31

Option 1: Ad-hoc Scanners

■ Manually implemented

■ Handle common tokens first

■ Used in many production compilers

□ Compact code

□ Efficient scanning

32

Option 2: Finite Automata

■ Each token specified by a regular
expression

■ Finite automata = Recognizers of
regular expressions

Example:

c ((a | b) c)∗ S1 c S2

a

b

33

Definition: DFA

Deterministic finite automaton (DFA):
(Q,Σ, δ, q0, F)

■ Finite set Q of states

■ Finite set Σ of input symbols

■ Transition function δ : Q× Σ → Q

■ Start state q0

■ Set of accept states F ⊆ Q

34

DFA versus NFA

■ Deterministic finite automaton (DFA)

□ At most one outgoing transition for each input

symbol

□ No ϵ transitions (empty word)

■ Non-deterministic finite automaton
(NFA)

□ Multiple outgoing transitions for same character

□ May have ϵ transitions

35

From Reg. Expr. to DFA

■ Regular expression to NFA
■ NFA to DFA

□ To avoid exploring multiple possible next states

during scanning

■ DFA to minimal DFA
□ Simplifies a DFA-based scanner

□ Remove unreachable and non-distinguishable

states

See course on theoretical computer science or Chapter 2 of
“Programming Language Pragmatics” for details

