
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Names, Scopes, and Bindings

2

Names in PLs

Abstraction in two dimensions

■ From hardware
□ Variable names abstract away how exactly

values are stored

■ From implemented functionality
□ Function names abstract from the implemented

behavior

3

Binding

■ Association between entities and their
names, e.g.,

□ A variable bound to a memory object

□ A function bound to the code implementing the
function

■ Different languages have different
rules

□ E.g., static vs. dynamic binding

4 - 1

Scope

■ Scope of a binding: Textual region
where binding is active

■ Scope: Maximal region where no
bindings change

Example (Python):
x = 1
def f():

x = 2
y = x

4 - 2

Scope

■ Scope of a binding: Textual region
where binding is active

■ Scope: Maximal region where no
bindings change

Example (Python):
x = 1
def f():

x = 2
y = x

Outer scope

Scope of
function

5

Overview

■ Object lifetime and storage
management

■ Scopes

■ Aliasing and overloading

■ Binding of referencing environments

6

Object Lifetime

Every memory object has a lifetime

■ Global variables: Entire program execution

■ Local variables: Function execution

Object lifetime vs. binding lifetime

■ A single object may be bound to multiple names

■ Bindings may be concurrent

32

33

9

Storage Allocation

Three kinds of memory objects

■ Static
□ Absolute address retained throughout execution

■ Stack

□ Usually within subroutines

□ Allocation/deallocation on call/return

■ Heap

□ Allocation and deallocation at arbitrary times

10

Statically Allocated Memory

Depending on the PL, used, e.g., for

■ Global variables

■ Constant literals

■ Symbol tables

■ Program code itself

■ Compile-time constants

□ Even if local to function

34

12

Heap-based Allocation

■ For dynamically allocated data
structures and objects whose size is
statically unknown
□ E.g., objects in Java

■ Some PLs: Managed memory
□ Unreachable objects: Implicitly deallocated

• Unreachable = No active binding

□ Less control but fewer bugs

• E.g., no use-after-free

13 - 1

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor
}

public class App {
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course c = null;
c = new Course(name, credits);

}
}

Where are the following data
objects stored (in Java)?

■ The integer 4

■ The reference variable c

■ The Course object

13 - 2

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor
}

public class App {
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course c = null;
c = new Course(name, credits);

}
}

Stack (in allocation
frame of main)

13 - 3

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor
}

public class App {
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course c = null;
c = new Course(name, credits);

}
}

Heap

13 - 4

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor
}

public class App {
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course c = null;
c = new Course(name, credits);

}
}

Bonus: Where
is the string
stored?

13 - 5

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor
}

public class App {
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course c = null;
c = new Course(name, credits);

}
}

Bonus: Where
is the string
stored?

String pool in
heap space

14

Overview

■ Object lifetime and storage
management

■ Scopes

■ Aliasing and overloading

■ Binding of referencing environments

15

Scoping Rules

■ Scoping rules: Define which bindings
are active
□ I.e., what’s the meaning of a name at a given

program point?

■ Each PL defines its scoping rules

□ E.g., Basic has only one scope

□ Most PLs have nested scopes for subroutines

16

Nested Scopes

■ Common for nested subroutines

■ Each subroutine has its own scope

■ Closest nested scope rule

□ Name is known in scope where it is declared

and all scopes nested within

□ Inner scopes can hide names from outer

scopes

35

18

Static vs. Dynamic Scoping

Static scoping

■ Binding of a name can be derived from program

text

■ Most common in today’s PLs

Dynamic scoping

■ Binding of a name depends on control flow

□ I.e., not known statically (in general)

19 - 1

Example

global x = 1
fun a() {

local x = 3
b()

}
fun b() {

y = x
}
a()

Pseudo code:

19 - 2

Example

global x = 1
fun a() {

local x = 3
b()

}
fun b() {

y = x
}
a()

Pseudo code:

Static scoping:
y gets value 1 because

■ b doesn’t have a local

variable called x

■ the surrounding static

scope provides the global

variable x

19 - 3

Example

global x = 1
fun a() {

local x = 3
b()

}
fun b() {

y = x
}
a()

Pseudo code:

Dynamic scoping:
y gets value 3 because

■ b doesn’t have a local

variable called x

■ the dynamically closest

scope provides the local

variable x of a

20 - 1

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;
sub foo {
return $b;

}
sub bar {
local $b = 3;
return foo();

}
print bar();

20 - 2

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;
sub foo {
return $b;

}
sub bar {
local $b = 3;
return foo();

}
print bar();

Scope of local $b

dynamically extends
into invocation of foo

20 - 3

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;
sub foo {
return $b;

}
sub bar {
local $b = 3;
return foo();

}
print bar(); Answer: 3

Scope of local $b

dynamically extends
into invocation of foo

21 - 1

Quiz: Static Scoping

What does this Python code print?
(Hint: Python uses static scoping)

x = "l"
def f():

def g():
print(x)

def h():
g()
x = "s"
print(x)

x = "e"
h()
print(x)

f()
print(x)

21 - 2

Quiz: Static Scoping

x = "l"
def f():

def g():
print(x) # (1) x in f : "e"

def h():
g()
x = "s"
print(x) # (2) x in h : "s"

x = "e"
h()
print(x) # (3) x in f : "e"

f()
print(x) # (4) x in main: "l"

What does this Python code print?
(Hint: Python uses static scoping)

22

Function Stack vs. Static Scopes

How to resolve bindings outside of
current scope?

■ Each allocation frame has a static link to its

parent scope

■ Push allocation
frames on calls

■ Pop frames on
returns

■ Not affected by
which functions
get called

36

24

Built-in Objects

Many PLs have built-in (or predefined)
objects

■ E.g., for built-in types and APIs

■ Invisible, outer-most scope

■ Accessible from all scopes, except if hidden

26

Overview

■ Object lifetime and storage
management

■ Scopes

■ Aliasing and overloading

■ Binding of referencing environments

27

Aliasing and Overloading

Aliasing: Two more more names refer to
the same object

Overloading: A name refers to two more
objects

name1
name2

object1

name1 object2
object1

28 - 1

Aliasing: Example
#include <stdio.h>

void half(double& a)
{ // argument passed by reference

a = a / 2;
}

int main(int argc, const char* argv[])
{

double n = 5.0;
double *p = &n; // pointer to value stored in n

half(n);
half(*p);

printf("%f\n", n);
}

28 - 2

Aliasing: Example
#include <stdio.h>

void half(double& a)
{ // argument passed by reference

a = a / 2;
}

int main(int argc, const char* argv[])
{

double n = 5.0;
double *p = &n; // pointer to value stored in n

half(n);
half(*p);

printf("%f\n", n);
} Result: 1.250000

Aliases to same
memory object

29 - 1

Overloading: Example

class Overloading{
void foo() {}
void foo(int n) {}
void foo(String s) {}

public static void main(String[] args) {
Overloading o = new Overloading();
o.foo(...);

}
}

29 - 2

Overloading: Example

class Overloading{
void foo() {}
void foo(int n) {}
void foo(String s) {}

public static void main(String[] args) {
Overloading o = new Overloading();
o.foo(...);

}
}

Three methods,
all with name
“foo”

Resolution of name
depends on arguments

30

Overview

■ Object lifetime and storage
management

■ Scopes

■ Aliasing and overloading

■ Binding of referencing environments

31

Referencing Environment

Complete set of bindings at a point in the
program

■ Determined by scoping rules (e.g., static or

dynamic scoping)

What if we create a reference to a
function?

■ When to apply the scoping rules?

32 - 1

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

32 - 2

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

Reference to
a function

32 - 3

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

Reference to
a function

Function
called here

32 - 4

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

What memory object
is x bound to?

33 - 1

Shallow Binding

Referencing environment created when
function is called

■ Common in languages with dynamic scoping

33 - 2

Shallow Binding

Referencing environment created when
function is called

■ Common in languages with dynamic scoping
function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

33 - 3

Shallow Binding

Referencing environment created when
function is called

■ Common in languages with dynamic scoping
function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

x bound to the global
variable initialized to 5;
code prints 5

34 - 1

Deep Binding

Referencing environment created when
the reference to the function is created

■ Common in languages with static scoping

34 - 2

Deep Binding

Referencing environment created when
the reference to the function is created

■ Common in languages with static scoping
function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

34 - 3

Deep Binding

Referencing environment created when
the reference to the function is created

■ Common in languages with static scoping
function a() {
var x = 23;
function b() {
console.log(x);

}
x = 42;
return b;

}
b = a();
var x = 5;
b();

x bound to the local
variable initialized to 23;
code prints 42, as this is
the most recent value of x

35

Closure

■ Implementation of deep binding

■ Closure = Representation of
referencing environment + function
itself

■ When creating reference to function,
closure is created

36

Example: Closures

function outer(k, fun) {
function inner() {

console.log(k);
}

if (k > 0)
fun();

else
outer(k + 1, inner)

}

function other() {}

outer(-1, other);

37

38 - 1

Quiz: Scopes and Bindings

Which of the following statements is
true?

■ Heap-allocated memory is freed at the end of

each function call.

■ A memory object is bound to at most one name.

■ Built-in objects are available in an invisible,

outer-most scope.

■ With shallow binding, the referencing environment

is created when a function is called.

38 - 2

Quiz: Scopes and Bindings

Which of the following statements is
true?

■ Heap-allocated memory is freed at the end of

each function call.

■ A memory object is bound to at most one name.

■ Built-in objects are available in an invisible,

outer-most scope.

■ With shallow binding, the referencing environment

is created when a function is called.

39

Overview

■ Object lifetime and storage
management

■ Scopes

■ Aliasing and overloading

■ Binding of referencing environments ✔

