Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

Names in PLs

Abstraction in two dimensions

s From hardware

0 Variable names abstract away how exactly
values are stored

= From implemented functionality

o Function names abstract from the implemented
behavior

Binding

s Association between entities and their
hames, e.g.,

o A variable bound to a memory object

o A function bound to the code implementing the
function

= Different languages have different
rules

o E.g., static vs. dynamic binding

Scope

= Scope of a binding: Textual region
where binding is active

= Scope: Maximal region where no
bindings change

Example (Python):
x=1
def £():

X =2

y==x

- 1

Scope

= Scope of a binding: Textual region
where binding is active

= Scope: Maximal region where no
bindings change

Example (Python):
x =1] Outer scope
def £():

X = 2 Scope of

y=x function

Overview

= Object lifetime and storage
management

= Scopes
= Aliasing and overloading
= Binding of referencing environments

Object Lifetime

Every memory object has a lifetime

m Global variables: Entire program execution

m Local variables: Function execution

Object lifetime vs. binding lifetime

m A single object may be bound to multiple names

m Bindings may be concurrent

P

(O { A
4x¢¢w“"°h

\J4

S~

7

32

Ekwp\.«t 2

Y02\ (& VN

= execuds o,

) @‘Djlo‘(‘

v

&)w‘tpa&\‘v\
d
v OX . ‘ n)
&j\Q\A@LMb o \l)% Q aho\\laj r‘ﬂe"?\«q’
L MM-&.\/\‘P ‘w&-—% attacke o C

33

Storage Allocation

Three kinds of memory objects

m Static
0 Absolute address retained throughout execution

m Stack

0 Usually within subroutines
0 Allocation/deallocation on call/return

m Heap

0 Allocation and deallocation at arbitrary times

Statically Allocated Memory

Depending on the PL, used, e.g., for

m Global variables

m Constant literals

s Symbol tables

m Program code itself

s Compile-time constants

0 Even if local to function

S"‘mck - base a\ A’V 0cok ouy

for <O

gw b O 4

"

\ 8K 4

‘lwc‘}
L

P e ROTS 0& 3‘00"“"

34

(,cc-‘) clach ,(\QM&

or mc* Vo

-L‘a,. rtcOfA

ﬂwtv\‘,‘s ~o)

d LcAs.

s

—_————

Tewa pove —e$
Loc ot
V@ " '\bLLS

TMesc. &N‘

ook heap'v 8
/

S— cthurn adolvess j

Heap-based Allocation

= For dynamically allocated data
structures and objects whose size is
statically unknown

o E.g., objects in Java
= Some PLs: Managed memory
o Unreachable objects: Implicitly deallocated
« Unreachable = No active binding
0 Less control but fewer bugs

. E.g., no use-after-free

12

Quiz: Memory Allocation

Where are the following data

- = l)

class Course { objects stored (in Java)*
String name; m Theinteger 4

int credits; .

m [he reference variable ¢

// constructor s T

} ne Course object

public class App ({
public static void main(String[] args) {

String name = "PP";
int credits = 3+1;

Course ¢ = null;
c = new Course(name, credits);

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor

}

public class App {
public static void main(String[] args) {
String name =_TPP";

int credits =|3+1] ¢ Stack (in allocation
Course «——— frame of main)

¢ = new Course (name, credits);

13-2

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor

}

public class App ({
public static void main(String[] args) {
String name = "PP";
int credits = 3+1;

Course ¢ = null;

¢ =|new Course(name, credits)|<+— Heap

13 -

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor

}

public class App ({
public static void main(String[] args) {

String name = <+— Bonus: Where
int credits = 3+1;

is the string
Course ¢ = null; 0
¢ = new Course (name, credits); stored?

13 -

Quiz: Memory Allocation

class Course {
String name;
int credits;

// constructor

}

public class App ({
public static void main(String[] args) {

String name = <+— Bonus: Where
int credits = 3+1;

is the string
Course ¢ = null; 0
¢ = new Course (name, credits); stored?

) String pool in
heap space

13 -

5

Overview

= Object lifetime and storage
management

s Scopes «—
= Aliasing and overloading
= Binding of referencing environments

14

Scoping Rules

= Scoping rules: Define which bindings
are active

0 l.e., what’s the meaning of a name at a given
program point?

= Each PL defines its scoping rules

o E.g., Basic has only one scope

0 Most PLs have nested scopes for subroutines

15

Nested Scopes

= Common for nested subroutines
= Each subroutine has its own scope
s Closest nested scope rule

o Name is known in scope where it is declared
and all scopes nested within

o Inner scopes can hide names from outer

scopes

16

EK%‘MP U.«

Lo f1 (a1) §

ved X

fum b2 (223
fon 43 (3§

J
fon fu (a¥) f
Fon (s (a5)§

Jafr X

v a3

_—
'S

35

Static vs. Dynamic Scoping

Static scoping

m Binding of a name can be derived from program
text

m Most common in today’s PLs

Dynamic scoping
m Binding of a name depends on control flow

0 l.e., not known statically (in general)

18

Example

Pseudo code:

global x =1

fun a() {
local x =3
b()

}

fun b() {
y = X

}

a()

19 -

1

Example

Pseudo code:

global x =1

fun a() {
local x =3
b()

}

fun b() {
y = X

}

a()

Static scoping:
y gets value 1 because

m b doesn’t have a local

variable called x
m the surrounding static
scope provides the global

variable x

19 -

Example

Pseudo code:

global x =1

fun a() {
local x =3
b()

}

fun b() {
y = X

}

a()

Dynamic scoping:
y gets value 3 because

m b doesn’t have a local
variable called x

m the dynamically closest
scope provides the local
variable x of a

19 -

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;

sub foo {
return $b;

}

sub bar {
local $b = 3;
return foo();

}
print bar();

20 -

1

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;
sub foo {
return $b; «... Scope of local $b
;ub bar { dynamically extends
local $b = 3;" into invocation of foo

return foo();

}
print bar();

20 -

Quiz: Dynamic Scoping

What does this Perl code print?
(Hint: Perl uses dynamic scoping for local
variables)

$b = 5;
sub foo {
return $b; «... Scope of local $b
;ub bar { dynamically extends
local $b = 3;" into invocation of foo

return foo();

}
print bar(); Answer: 3

20 -

Quiz: Static Scoping

What does this Python code print?
(Hint: Python uses static scoping)

x = "1"
def £():
def g():
print (x)
def h():
g()
x = "g"
print (x)
X = "eH
h()
print (x)

£()
print (x)

21 -

Quiz: Static Scoping

What does this Python code print?
(Hint: Python uses static scoping)

X = "l"
def £():
def g():
print(x) # (1) xin £ : "e"
def h():
g()
X = "S"
print(x) # (2) xinh : "s"
X = "e"
h()
print (x) ¥ (3) xin £ : "e"
£()

print (x) # (4) x in main: "1"

21

-2

Function Stack vs. Static Scopes

] \

= Push allocation = Not affected by
frames on calls which functions

= Pop frames on get called
returns

How to resolve bindings outside of
current scope?

m Each allocation frame has a static link to its

parent scope
22

36

Tunckow thach

— S*‘“""\C

l, — | N

C

D 4?
[/

R
(
| & 7§
- 7 1

Built-in Objects

Many PLs have built-in (or predefined)
objects

m E.g., for built-in types and APIs
m Invisible, outer-most scope

m Accessible from all scopes, except if hidden

24

Overview

= Object lifetime and storage
management

= Scopes
= Aliasing and overloading <«——
= Binding of referencing environments

26

Aliasing and Overloading

Aliasing: Two more more names refer to
the same object

name1l -
namez2 -

— Object1
4'

Overloading: A name refers to two more

objects
_» Objectt

—» Object2

namel -

27

Aliasing: Example

#include <stdio.h>

void half (double& a)

{ // argument passed by reference
a=a/2;

}

int main(int argc, const char* argv[])

{
double n = 5.0;

double *p = &n; // pointer to value stored in n

half(n);
half(p);

printf ("$£f\n", n);

28 -

1

Aliasing: Example

#include <stdio.h>

void half (doubles [a]

{ // argument pass
a=a/ 2;

}

by reference

int main(int argc, const argvl[])
{

double|n|§.5.0;
double ‘Wto value stored in n

half(n) ; Aliases to same

half(+p); memory object
printf ("$£f\n", n);

} Result: 1.250000 ..

Overloading: Example

class Overloading{
void foo() {}
void foo(int n) {}
void foo(String s) {}

public static void main(String[] args) {
Overloading o = new Overloading() ;
o.foo(...);

29 -

1

Overloading: Example

class Overloading Three methods,
void foo() {} <

void foo(int n) {} all with name
void foo(String s) {} “$00”’

public static void main(String[] args) {
Overloading o = new Overloading() ;

o.foo(...);
S
Resolution of name
depends on arguments

29 -

Overview

= Object lifetime and storage
management

= Scopes
= Aliasing and overloading
= Binding of referencing environments «—

30

Referencing Environment

Complete set of bindings at a point in the
program

m Determined by scoping rules (e.g., static or

dynamic scoping)

What if we create a reference to a
function?

m When to apply the scoping rules?

31

Example

Pseudo code:

function a() {
var x = 23;
function b() {

console.log(x) ;

}
x = 42;
return b;

}

b = a();

var x = 5;

b();

32 -

1

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x) ;
}
x = 42;
return b, +——+

}
b =al();
var x = 5;

b();

Reference to
a function

32 -

Example

Pseudo code:

function a() {
var x = 23;
function b() {
console.log(x) ;

}

x = 42; Reference to
return b, +——+ .

} a function

b = a();

var x = 5;

b(); +——m—mmmmm ™ ——88 Function
called here

32 -

Example

Pseudo code:

function a() {
var|x|= 23;
function b() {
console.log E ;

What memory object

is x bound to?

32 -

Shallow Binding

Referencing environment created when
function is called

s Common in languages with dynamic scoping

33 -

1

Shallow Binding

Referencing environment created when
function is called

s Common in languages with dynamic scoping

function a() {
var x = 23;
function b() {

console.log(x) ;

}
x = 42;
return b;

}

b = a();

var x = 5;

b();

33 -

Shallow Binding

Referencing environment created when
function is called

s Common in languages with dynamic scoping

function a() {
var x = 23;
function b() {
console.log(x) ;

}

x = 42;
\ return b; x bound to the global
b = a(); variable initialized to 5;

var x = 5, ¢¥4/—m™mmm
b(); «e———— code prints 5

33 -

Deep Binding

Referencing environment created when
the reference to the function is created

s Common in languages with static scoping

34 -

1

Deep Binding

Referencing environment created when
the reference to the function is created

s Common in languages with static scoping

function a() {
var x = 23;
function b() {

console.log(x) ;

}
x = 42;
return b;

}

b = a();

var x = 5;

b();

34 -

Deep Binding

Referencing environment created when
the reference to the function is created

s Common in languages with static scoping

function a() {
var x = 23;
function b() {

console.log(x) ;
} x bound to the local

- variable initialized to 23:

- 20 code prints 42, as this is
var x = 5; the most recent value of x

34 -

Closure

= Implementation of deep binding

s Closure = Representation of
referencing environment + function
itself

= When creating reference to function,
closure is created

35

Example: Closures

function outer(k, fun) {
function inner() {
console.log(k) ;

}

if (k > 0)
fun() ;
else
outer(k + 1, inner)

}

function other() {}

outer (-1, other);

36

37

pronciny

FIVRV.1A 00 WCQ.JS

- u\’r\-\.nc‘ ‘ob

- closures

Quiz: Scopes and Bindings

Which of the following statements is
true?
m Heap-allocated memory is freed at the end of
each function call.
= A memory object is bound to at most one name.
m Built-in objects are available in an invisible,
outer-most scope.
m With shallow binding, the referencing environment

IS created when a function is called.

38 -

1

Quiz: Scopes and Bindings

Which of the following statements is
true?
n -Heap-alecated-+rermery-stroed-at-tho-cnrd-oi—
cach function call
m -A-Ferory-objectis-bouhd-to-at-rost-onrerahre—
m Built-in objects are available in an invisible,
outer-most scope.
m With shallow binding, the referencing environment

IS created when a function is called.

38 -

Overview

= Object lifetime and storage
management

= Scopes
= Aliasing and overloading
» Binding of referencing environments ‘/

39

