
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Logic Programming

2

Overview

■ Introduction

■ Prolog

■ Datalog and CodeQL

3

Logic Programming

■ Declarative style of programming

■ Based on logical deduction

■ Program states ...

□ What to compute

□ Not how to compute it

■ Implementations of logic PLs:
Based on automated theorem proving

4

Example: Sorting

■ Goal: Algorithm for sorting a list

■ Imperative PLs

□ Describe step-by-step how to rearrange

elements of a list

■ Logic PLs
□ Provide a constructive proof:

For every list, there exists a sorted list

composed of the same elements

5

Core Concepts

■ Programmer states axioms
□ Typically as Horn clauses:

H ← B1, B2, ..., B3

□ Means: If B1, B2, ..., B3 are true, then H is true

■ User states a theorem, i.e., the goal

■ PL implementation tries to find a proof
□ Axioms, inference steps, and choices of values

for variables that prove the theorem

6

History

■ Popular for AI (artificial intelligence)
programming in the 1970s and 1980s
□ Idea: Declarative representation of knowledge

□ AI clearly has taken another path

■ Prolog language: Since 1972
□ Position #30 in Tiobe PL popularity index

■ Datalog and CodeQL
□ PLs for querying deductive databases

□ Applications, e.g., in program analysis

7

Overview

■ Introduction

■ Prolog

■ Datalog and CodeQL

8 - 1

Example

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

8 - 2

Example

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

Means ”implication”

Means ”and”

8 - 3

Example

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

Means ”implication”

Means ”and”

Evaluates to ”true”

9

Clauses

■ Program runs in the context of a
database of clauses assumed to be
true

■ General form: <term>∗ :- <term>∗

□ Both sides given: Rule

□ Only left side given: Fact

□ Only right side given: Goal (or query)

• Usually written with ?- instead of :-

10

Terms

■ A term is one of these three:
□ Constant

• An atom (must start with lower-case letter)

• A number or a string

□ Variable (must starts with upper-case letter)

□ Structure: Logical predicate of the form

<functor>(<arg1>, ... <argN>)

11 - 1

Example (Again)

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

11 - 2

Example (Again)

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

Four clauses One rule

Two facts

Goal

11 - 3

Example (Again)

has_exam(X) :- is_course(X), gives_grade(X).

is_course(pp).

gives_grade(pp).

?- has_exam(pp).

Structure

Variable

Constant

12 - 1

Quiz: Prolog Syntax

How many occurrences of constants,
variables, and structures are there?

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).

?- snow(C).

12 - 2

Quiz: Prolog Syntax

How many occurrences of constants,
variables, and structures are there?

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).

?- snow(C).

3x constant
4x variable
6x structure

13

Answering Queries

■ How to answer a query (i.e., satisfy a
goal)?

■ Two key ideas

□ Resolution: Replace terms based on already

known clauses

□ Unification: “Pattern matching” to determine

two terms to be the same

14

Resolution Principle

■ Given: Clauses C1 and C2

■ If head of C1 matches a term t in the
body of C2:
Can replace t with body of C1

117

16

Unification Rules

■ A constant unifies only with itself

■ Two structures unify if and only if

□ Same functor

□ Same arity

□ Arguments unify recursively

■ A variable unifies with anything

□ .. with a value: Variable is instantiated

□ .. with another variable: Both take same value

17

Equality

■ Equality is defined via unifiability:
Goal A = B succeeds if and only if A
and B can be unified

118

19

Lists

■ Own syntax, as commonly used

□ Empty list: []

□ List with elements: [a, b, c]

□ Delimiter before tail of list: |

• [a, b | [b, c]] means [a, b, b, c]

• [a, b, c | []] means [a, b, c]

20 - 1

Examples

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

sorted([]).

sorted([_]).

sorted([A, B | T]) :- A =< B, sorted([B | T]).

20 - 2

Examples

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

sorted([]).

sorted([_]).

sorted([A, B | T]) :- A =< B, sorted([B | T]).

Variable that isn’t needed anywhere

Built-in predicate that
operates on numbers

21

Predicates vs. Functions

■ Functions distinguish between inputs
and outputs

□ In imperative or functional PL: Apply function to

arguments to generate a result

■ Predicates don’t distinguish between
inputs and outputs

□ In logic PL: Search values for which a predicate

is true

119

23 - 1

Quiz: Prolog Programs

What do the three queries evaluate to?

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

?- member([a], [a, b]).

?- member(d, [a, b | [c, d]]).

?- member(X, [a, b | [c]]).

23 - 2

Quiz: Prolog Programs

What do the three queries evaluate to?

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

?- member([a], [a, b]).

?- member(d, [a, b | [c, d]]).

?- member(X, [a, b | [c]]).

false, because [a]
is not in [a, b]

true

X = a (i.e., first
solution found)

24

Searching for a Proof

■ Given a query/goal, how to answer it?

□ Want: Sequence of resolution steps that build

the goal out of known clauses

□ Or: Proof that no such sequence exists

■ Proof tree

□ Root node: Goal

□ Other nodes: Subgoals

120

26 - 1

Forward vs. Backward Chaining

Two options for finding a proof:

■ Forward chaining

□ Start with existing clauses and attempt to derive goal

□ I.e., build proof tree bottom-up

■ Backward chaining

□ Start with goal and “unresolve” it into a set of existing

clauses

□ I.e., build proof tree top-down

26 - 2

Forward vs. Backward Chaining

Two options for finding a proof:

■ Forward chaining

□ Start with existing clauses and attempt to derive goal

□ I.e., build proof tree bottom-up

■ Backward chaining

□ Start with goal and “unresolve” it into a set of existing

clauses

□ I.e., build proof tree top-down

Prolog uses this

27

Backtracking Search

■ Prolog explores the tree depth-first,
left-to-right

□ Search for rule R whose head can be unified

with current goal

□ Terms in body of R become new subgoals

■ Backtrack if a subgoal fails

28

Example

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).

?- snowy(C).

121

30

Overview

■ Introduction

■ Prolog

■ Datalog and CodeQL

31

Datalog

■ Variant of Prolog
■ Used as query language for deductive

databases
□ Set of known facts

□ Rules to derive new facts

■ E.g., used for reasoning about code
□ Fact: y is assigned to x

□ Rule: If y is assigned to x and y points to

object o, then x also points to object o

32 - 1

CodeQL

■ Static analysis engine by GitHub

■ Goal: Find vulnerabilities and other
bugs in the source code

■ CodeQL language

□ Variant of Datalog

□ One query per bug pattern

• E.g., deserialization of unsanitized user input

32 - 2

CodeQL

■ Static analysis engine by GitHub

■ Goal: Find vulnerabilities and other
bugs in the source code

■ CodeQL language

□ Variant of Datalog

□ One query per bug pattern

• E.g., deserialization of unsanitized user input

33 - 1

CodeQL Language

■ Syntax resembles SQL

■ But actually a declarative logic PL

Example:

from Class c

where c.declaresMethod("equals") and

not(c.declaresMethod("hashCode")) and

c.fromSource()

select c.getPackage(), c

33 - 2

CodeQL Language

■ Syntax resembles SQL

■ But actually a declarative logic PL

Example:

from Class c

where c.declaresMethod("equals") and

not(c.declaresMethod("hashCode")) and

c.fromSource()

select c.getPackage(), c Find classes with an
equals but no
hashCode method

34

CodeQL Demo

[DEMO]
import of database from GitHub
view AST of some file
run a query

35

Overview

■ Introduction

■ Prolog

■ Datalog and CodeQL ✔

36 - 1

Outlook & Opportunities

■ Master-level courses

□ Program Analysis

□ Analyzing Software using Deep Learning

□ Seminar: Machine Learning for Programming

■ Do research with us

□ Bachelor and Master theses

36 - 2

Outlook & Opportunities

■ Master-level courses

□ Program Analysis

□ Analyzing Software using Deep Learning

□ Seminar: Machine Learning for Programming

■ Do research with us

□ Bachelor and Master theses

Paul Bredl (2021)

36 - 3

Outlook & Opportunities

■ Master-level courses

□ Program Analysis

□ Analyzing Software using Deep Learning

□ Seminar: Machine Learning for Programming

■ Do research with us

□ Bachelor and Master theses

Paul Bredl (2021)

36 - 4

Outlook & Opportunities

■ Master-level courses

□ Program Analysis

□ Analyzing Software using Deep Learning

□ Seminar: Machine Learning for Programming

■ Do research with us

□ Bachelor and Master theses

Yiu Wai Chow (2022)

