Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

Overview

= Introduction
= Prolog
= Datalog and CodeQL

Logic Programming

= Declarative style of programming
= Based on logical deduction
= Program states ...

o What to compute

o Not how to compute it

= Implementations of logic PLs:
Based on automated theorem proving

Example: Sorting

= Goal: Algorithm for sorting a list
= Imperative PLs

o Describe step-by-step how to rearrange
elements of a list

= Logic PLs

o Provide a constructive proof:
For every list, there exists a sorted list
composed of the same elements

Core Concepts

= Programmer states axioms

o Typically as Horn clauses:
H + Bl, BQ, ooy B3

o Means: If By, Bs, ..., B3 are true, then H is true
= User states a theorem, i.e., the goal
= PL implementation tries to find a proof

0 Axioms, inference steps, and choices of values
for variables that prove the theorem

History

= Popular for Al (artificial intelligence)
programming in the 1970s and 1980s

0 ldea: Declarative representation of knowledge
0 Al clearly has taken another path
= Prolog language: Since 1972
o Position #30 in Tiobe PL popularity index
= Datalog and CodeQL
0 PLs for querying deductive databases

o Applications, e.g., in program analysis

Overview

= Introduction
s Prolog <«—
= Datalog and CodeQL

Example

has exam(X) :— is course(X), gives grade(X) .

is_course(pp) .

gives_ grade (pp) .

?— has exam(pp) .

- 1

Example

Means “implication”

has exam(X) :— is course(X), gives grade(X) .

is course(pp) . A

gives grade(pp) . Means ”and”

?— has exam(pp) .

Example

Means “implication”

has exam(X) :— is course(X), gives grade(X) .

is course(pp) . A

gives grade(pp) . Means ”and”

?— has exam(pp) .

> Evaluates to ’true”

Clauses

= Program runs in the context of a
database of clauses assumed to be
true

s General form: <term>* :- <term>*
1 Both sides given: Rule
0 Only left side given: Fact
0 Only right side given: Goal (or query)

« Usually written with ?— instead of : -

Terms

= A term is one of these three:
o Constant
« An atom (must start with lower-case letter)
« A number or a string
0 Variable (must starts with upper-case letter)

0 Structure: Logical predicate of the form

<functor> (<argl>, ... <argN>)

10

Example (Again)

has exam(X) :— is course(X), gives grade(X) .

is_course(pp) .

gives_ grade (pp) .

?— has exam(pp) .

11 -

Example (Again)

_ Four clauses One rule

_has_exam (X) :— is course(X), gives_grade (X)]—

is_course(pp) .

gives_ grade (pp) .

?— has exam(pp) :'7 Goal

_ Two facts

11

-2

Example (Again)

Variable

—

has_exam(X)| :— is_course(X))|, lgives_grade(X)|.

is_course(pp) . T
gives_grade @ :

\ Structure

?- has_exam({pp] Constant

Quiz: Prolog Syntax

How many occurrences of constants,
variables, and structures are there?

rainy (seattle) .

rainy (rochester) .
cold(rochester) .

snowy (X) :— rainy(X), cold(X).

?— snow(C) .

12 -

1

Quiz: Prolog Syntax

How many occurrences of constants,
variables, and structures are there?

3x constant

rainy (seattle) .
rainy (rochester) . 4x variable
cold(rochester) . 6x structure

snowy (X) :— rainy(X), cold(X).

?— snow(C) .

12 -

Answering Queries

= How to answer a query (i.e., satisfy a
goal)?
= Two key ideas

o Resolution: Replace terms based on already

known clauses

0 Unification: “Pattern matching” to determine

two terms to be the same

13

Resolution Principle

s Given: Clauses (', and (5

n If head of ', matches a term ¢ in the
body of C5:
Can replace ¢ with body of

14

117

EKMPQ

tales (meo\' %‘/w\oé) 3
"“m\r\LS (O\W’\A‘ rr)c @
ke L f@w(\ nse).

talecs K rmf\j*i ff)

Y - (x 2) deles (Y, 2)
r@\msSmw&«’-» (X [) o lecs) |

Lb XK= awma ond 2=y

- —-\\m‘ws (O«W\Ao\| rf\) ‘\ALAS (7‘ ‘-r}

D Jacswatts ((oawna, M)

— —
N p\‘\ C/(‘vt) @ @
MW e O)\D &v\go kJ ;‘\p \,.// L r"“b ‘oOdb (9{,

CLASS\/\/‘O\A’t> (owvvw‘ \73 =~ dalas (7, r‘ox

Unification Rules

= A constant unifies only with itself
= Two structures unify if and only if
1 Same functor
0 Same arity
o Arguments unify recursively
= A variable unifies with anything
0 .. with a value: Variable is instantiated

0 .. with another variable: Both take same value .,

Equality

s Equality is defined via unifiability:
Goal A = B succeeds if and only if A
and B can be unified

17

118

E xamn plus
Z- a=a
Frae
2 - o=
Lkse
- fee (b)) = oo la L)
Foae
T =
X = a
¢ - oo (o, b) = koo (X'5)

Lists

= Own syntax, as commonly used
0 Empty list: []
o List with elements: [a, b, c]
0 Delimiter before tail of list: |
. [a, b | [b, cl] means [a, b, b, c]

e [, b, c | []] mMmeans [a, b, c]

19

Examples

member(X, [X | _1).
member(X, [| T])

sorted([]) .
sorted([1) .
sorted([A, B | T])

:— member (X, T).

:— A =< B, sorted([B | T]).

20 -

1

Examples

Variable that isn’t needed anywhere

'

member(X, [X | ']).
member(X, [| T]) :— member(X, T).

Built-in predicate that

sorted([]) . operates on numbers

sorted([1) . /
sorted([A, B | T]) :-— A =< B, sorted([B | T]).

20 -

Predicates vs. Functions

s Functions distinguish between inputs
and outputs

o In imperative or functional PL: Apply function to
arguments to generate a result

= Predicates don’t distinguish between
inputs and outputs

o In logic PL: Search values for which a predicate
IS true

21

N

< d (Ea.,lo\c:)\ Ed\éj’ L.»

. @m%

L:[:D\'b\Q\O\Wzl_

2 agpend (X Ll Cenbieioied)
X = [o.bc]).

- a@wd ((Labycd, VY Cab,c,de])

\/‘-' Y,O\,bl.

CHIT A, CHILD) o ageend (T A
f? gX/ & &cé@vo\ OS 3@(0(5 ""L‘\fa\ 4.'3.

L)

119

Quiz: Prolog Programs

What do the three queries evaluate to?

member(X, [X | _1).
member(X, [| T]) :— member(X, T).

?— member([a], [a, b]).
?—-member(d, [a, b | [¢c, d]]).
?—- member(X, [a, b | [c]]).

23 -

1

Quiz: Prolog Programs

What do the three queries evaluate to?

member(X, [X | _1).
member(X, [| T]) :— member(X, T).

false, because [a]

?— member([a], [a, b]). = IS hot in [a, b]
?—-member(d, [a, b | [c, d]]).
?- member(X, [a, b | [c]]). true

\ X = a (i.e., first

solution found) =

Searching for a Proof

= Given a query/goal, how to answer it?

o Want: Sequence of resolution steps that build
the goal out of known clauses

o Or: Proof that no such sequence exists
s Proof tree
o Root node: Goal

o Other nodes: Subgoals

24

Forward vs. Backward Chaining

Two options for finding a proof:

m Forward chaining
0 Start with existing clauses and attempt to derive goal
0 l.e., build proof tree bottom-up

m Backward chaining

o Start with goal and “unresolve” it into a set of existing

clauses

0 l.e., build proof tree top-down

26 -

1

Forward vs. Backward Chaining

Two options for finding a proof:

m Forward chaining
0 Start with existing clauses and attempt to derive goal

0 l.e., build proof tree bottom-up

= Backward chaining Prolog uses this

o Start with goal and “unresolve” it into a set of existing

clauses

0 l.e., build proof tree top-down

26 -

Backtracking Search

= Prolog explores the tree depth-first,
left-to-right

o Search for rule R whose head can be unified
with current goal

0 Terms in body of R become new subgoals

s Backtrack if a subgoal fails

27

Example

rainy (seattle) .

rainy (rochester) .
cold(rochester) .

snowy (X) :— rainy(X), cold(X).

?— snowy (C) .

28

121

snowy (€ Oigivnd goul
X aw\o)\ C ‘NW\A\— \&
Aalee Sawe value ; f [oolt Aote
'yowa% (XB \anses
D -~ o
S— — M
oo eld () S"”b\)e’d
o (ee) T J \
NS ‘ ((de
e 3 CMO‘A‘A"
— pcheck co&é’((\y)u;kr) Lamses

Overview

= Introduction
= Prolog
= Datalog and CodeQL <—

30

Datalog

= Variant of Prolog

= Used as query language for deductive
databases

0 Set of known facts
o Rules to derive new facts

= E.g., used for reasoning about code
o Fact: v Is assigned to x

o Rule: If y is assigned to x and y points to

object o, then x also points to object o N

CodeQL

= Static analysis engine by GitHub

s Goal: Find vulnerabilities and other
bugs In the source code

= CodeQL language
o Variant of Datalog
o One query per bug pattern

. E.g., deserialization of unsanitized user input

32 -

1

CodeQL

OG”:Hub Docs Repository License Security Lab

CodeQL

Discover vulnerabilities across a codebase with CodeQL, our
industry-leading semantic code analysis engine. CodeQL lets
you query code as though it were data. Write a query to find all

variants of a vulnerability, eradicating it forever. Then share
your query to help others do the same.

CodeQL is free for research and open source.

UnsafeDeserialization.qgl
from DataFlow: :PathNode source, DataFlow::PathNode sink, UnsafeDeserializationConfig conf

where conf.hasFlowPath(source, sink)

select sink.getNode(). (UnsafeDeserializationSink).getMethodAccess(), source, sink,
"Unsafe deserialization of $@.", source.getNode(), "user input"

her

nput

32 -2

CodeQL Language

= Syntax resembles SQL
= But actually a declarative logic PL

Example:

from Class ¢

where c.declaresMethod('"equals'") and
not (c.declaresMethod('"hashCode')) and
c.fromSource()

select c.getPackage(), c

33 -

1

CodeQL Language

= Syntax resembles SQL
= But actually a declarative logic PL

Example:

from Class ¢

where c.declaresMethod('"equals'") and
not (c.declaresMethod('"hashCode')) and
c.fromSource()

select c.getPackage(), c Find classes with an

equals but nho
hashCode method ,; .

CodeQL Demo

[DEMO]

import of database from GitHub
view AST of some file

run a query

34

Overview

= Introduction
= Prolog
= Datalog and CodeQL

v

35

Outlook & Opportunities

s Master-level courses
o Program Analysis
0 Analyzing Software using Deep Learning

o Seminar: Machine Learning for Programming

s Do research with us

0 Bachelor and Master theses

36 -

1

Outlook & Opportunities

= PJifiSearch: A Scalable and Precise Search Engine for Code Changes

¢ > Source B Paper @ ~bout

Languages: @ Java O JavaScript O Python
Filter: Y

Insert your query for matching Java code changes o

Insert the old code... E Insert the new code...

Search

o Bachelor and Master theses

Paul Bredl (2021)

Outlook & Opportunities

= PJifiSearch: A Scalable and Precise Search Engine for Code Changes

¢ > Source B Paper @ ~bout

Languages: @ Java O JavaScript O Python
Filter: Y

Insert your query for matching Java code changes o

|EEE THANSACTIONS ON SOFTWARE ENGINEERING 1
Insert the old code...

DiffSearch: A Scalable and Precise
Search Engine for Code Changes

Luca Di Grazia, Paul Bredl, Michael Pradel

Abstract—The source code of successful projects is evolving all the time, resulting in hundreds of thousands of code changes stored

in source code repositories. This wealth of data can be useful, e.g., to find changes similarto a planned code change or examples of
I:l a C e O r a n a S E recurring code improveme nts. This paper presents DiffSearch, a search engine that, given a query that describes a code change,
returns a set of changes that match the guery. The approach is enabled by three key contributions. First, we present a gquery language
that extends the underlying programming language with wildcards and placeholders, providing an intuitive way of formulating queries
that is easy to adapt to different programming languages. Second, to ensure scalability, the appreach indexes code changes ina
one-time preprocessing step, mapping them into a feature space, and then performs an efficient search in the feature space for each
query. Third, to guarantee precision, i.e., that any returned code change indeed matches the given guery, we present a tree-based
matching algorithm that checks whether a query can be expanded to a concrete code change. We present implementations for Java,
Pa u I B red I (202 1) JavaScript, and Python, and show that the approach responds within seconds to queries across one milion code changes, has a recall
of B0.7%: for Java, 89.6% for Python, and 90.4%: for JavaScript, enables users to find relevant code changes more effectively than a
regular expression-based search and GitHub's search feature, and is helpful for gathering a large-scale dataset of real-world bug fixes. 3

Outlook & Opportunities

Beware of the Unexpected: Bimodal Taint Analysis

Yiu Wai Chow Max Schifer Michael Pradel
University of Stuttgart GitHub University of Stuttgart
Stuttgart, Germany Oxtord, UK Stuttgart, Germany
victorcwai(@gmail.com max-schaefer@github.com michael@binaervarianz.de
ABSTRACT 17-21, 2023, Seattle, WA, United States. ACM, New York, NY, USA, 12 pages.

Static analysis is a powerful tool for detecting security vulnerabili-
ties and other programming problems. Global taint tracking, in par-
ticular, can spot vulnerabilities arising from complicated data flow
across multiple functions. However, precisely identifying which
flows are problematic is challenging, and sometimes depends on
factors beyond the reach of pure program analysis, such as con-

s Do research with us

o Bachelor and Master theses

Yiu Wai Chow (2022)

https://doi.org/10.1145/3597926.3598050

1 INTRODUCTION

Taint analysis is a powerful technique for detecting various kinds of
programming mistakes, including both security vulnerabilities and
other kinds of bugs. A taint analysis tracks the flow of information

36 -4

