
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Introduction

2

About Me: Michael Pradel

■ Since 9/2019: Full Professor
at University of Stuttgart

■ Before
□ Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
□ PhD at ETH Zurich, Switzerland
□ Postdoctoral researcher at UC Berkeley, USA
□ Assistant Professor at TU Darmstadt
□ Sabbatical at Facebook, Menlo Park, USA

3

About the Software Lab

■ My research group since 2014
■ Focus: Tools and techniques for

building reliable, efficient, and secure
software
□ Program testing and analysis
□ Machine learning, security

■ Thesis and job opportunities

4

Overview

■ Motivation
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Exercises
□ Grading

■ Introduction
□ Programming languages:

History, paradigms, compilation, interpretation

5

The Role of Programming

■ Programming: Essential form of
expression for a computer scientist
□ ”The limits of my language mean the limits of

my world.” (Ludwig Wittgenstein)

■ Programming languages determine
what algorithms and ideas you can
express

6

Goal of this Course

Understand how programming
languages (PLs) work

■ How are languages defined?

■ What language design choices exist?

■ What language features could I use?

■ How are languages implemented?

7

Why Learn About PLs?

Enables you to

■ choose the right PL for a specific purpose

■ choose among alternative ways to express things

■ make best use of tools (e.g., debuggers, IDEs,
analysis tools)

■ understand obscure language features

■ simulate useful features in languages that lack

them

8

Concepts vs. Languages

This course is not about

■ All details of a specific language

■ A systematic walk through a set of languages

Instead, this course is about

■ Concepts underlying many languages

■ Various languages as examples

9 - 1

Isn’t Knowing {Pick a PL} Enough?

■ Complex systems:
Built in various languages

□ E.g., Facebook/Meta: Wild mix of languages

covering various language paradigms

■ New languages arrive regularly
(and old ones fade away)

9 - 2

Isn’t Knowing {Pick a PL} Enough?

■ Complex systems:
Built in various languages

□ E.g., Facebook/Meta: Wild mix of languages

covering various language paradigms

■ New languages arrive regularly
(and old ones fade away)

10

Plan for Today

■ Motivation
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Exercises
□ Grading

■ Introduction
□ Programming languages:

History, paradigms, compilation, interpretation

11

Language

■ Written material (slides, exercises):
English

■ Lectures: German

■ Exercise discussions: English

■ Final exam: Questions in English,
answers in German or English

12

Schedule

Three weekly slots:
Mon, Wed, Fri, all 11:30am

■ But: Not all slots used

■ See course page for schedule:

http://software-lab.org/teaching/summer2023/pp/

13

Lectures

Slides, hand-written notes, etc:

■ Made available shortly after each lecture

Lecture videos:

■ Old videos available on course page

■ This year’s lectures will be recorded

■ Recommendation: Use for exam preparation, not

as replacement for live lectures

14

Exercises

■ Six graded exercises

■ We publish on day X
□ On the course page

■ You submit your solution by day X+7
□ Via Ilias

■ Discussion of exercises after day X+7

□ One discussion session for the entire course

15

Ilias

Platform for discussions, in-class
quizzes, and sharing additional material

■ Please register for the course
■ Use it for all questions related to the course
■ Messages sent to all students go via Ilias

Link to Ilias course on
software-lab.org/teaching/summer2023/pp/

16

Quizzes During the Lectures

■ A few quizzes during each lecture
□ Check your understanding

□ Access quizzes via Ilias

■ Up to two bonus points for the final
exam
□ Partial points for answering at all

□ Full points for correct answers

17

Questions and Discussions

For any (non-personal) questions:
Use forum in Ilias

■ Preferred language: English

■ Answering each other is encouraged

■ Teaching assistants and me are monitoring it

18

Grading

■ Exercises: Passing is prerequisite for
final exam (“Schein”)
□ Six exercises

□ Each exercise: 100 points

□ Needed to pass:

• At least 30 points in five exercises

• At least 360 total points

□ If at least 30 points in all six exercises:
One bonus point for the final exam

□ Your points: Published after each exercise

19

Final Exam

■ Final exam: Open book
□ All printed and hand-written material allowed

(incl. slides, textbooks, and a dictionary)

□ Tests your understanding, not your knowledge

20

Plagiarism and Cheating

■ Exercises are individual
■ Any form of cheating and plagiarism

□ Treated like cheating in an exam

□ I.e., failing the ”Schein”

■ Cheating includes
□ Showing your solution to others

□ Working together in a solution

□ Using a solution from someone else

□ Using a solution suggested by an AI tool

21

Reading Material

■ Most relevant book:
Programming Language Pragmatics
by Michael L. Scott

■ Also interesting:
Concepts of Programming Languages
by Robert W. Sebesta

■ Pointers to book chapters and web
resources: Course page

22 - 1

Some Statistics (Summer 2022)

■ 80/115 students who submitted ≥ 1 exercise(s)

got the “Schein”

■ 80/91 students who submitted ≥ 3 exercise(s) got

the “Schein”

■ Of those students who got the “Schein”, only 4/79

failed the final exam

22 - 2

Some Statistics (Summer 2022)

■ 80/115 students who submitted ≥ 1 exercise(s)

got the “Schein”

■ 80/91 students who submitted ≥ 3 exercise(s) got

the “Schein”

■ Of those students who got the “Schein”, only 4/79

failed the final exam

Don’t give up too early!

The “Schein” prepares well for the exam.

22 - 3

Some Statistics (Summer 2022)

Exam grades:

22 - 4

Some Statistics (Summer 2022)

Exam grades: Median grade: 2.3

22 - 5

Some Statistics (Summer 2022)

Exam grades: Median grade: 2.3

Students with two
bonus points from
in-lecture quizzes:
Median grade of 1.7

Students with zero
bonus points from
in-lecture quizzes:
Median grade of 2.7

23

Plan for Today

■ Motivation
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Exercises
□ Grading

■ Introduction
□ Programming languages:

History, paradigms, compilation, interpretation

24 - 1

History: From Bits ...

First electronic computers: Programmed
in machine language

■ Sequence of bits

■ Example: Calculate greatest common divisor

24 - 2

History: From Bits ...

First electronic computers: Programmed
in machine language

■ Sequence of bits

■ Example: Calculate greatest common divisor

Machine time more valuable than
developer time

25 - 1

... over Assembly ...

Human-readable abbreviations for
machine language instructions

■ Less error-prone, but still very machine-centered

■ Each new machine: Different assembly language

■ Developer thinks in terms of low-level operations

25 - 2

... over Assembly ...

Greatest common divisor in x86:

26 - 1

... to High-level Languages

■ 1950s: First high-level languages
□ Fortran, Lisp, Algol

■ Developer thinks in mathematical and
logical abstractions

26 - 2

... to High-level Languages

subroutine gcd_iter(value, u, v)
integer, intent(out) :: value
integer, intent(inout) :: u, v
integer :: t

do while(v /= 0)
t = u
u = v
v = mod(t, v)

enddo
value = abs(u)

end subroutine gcd_iter

Greatest common divisor in Fortran:

27 - 1

Today: 1000s of Languages

■ New languages gain traction regularly

■ Some long-term survivors

□ Fortran, Cobol, C

27 - 2

Today: 1000s of Languages

■ New languages gain traction regularly

■ Some long-term survivors

□ Fortran, Cobol, C

Poll:
Your favorite programming language?

See LiveVoting in Ilias

28

What Makes a PL Successful?

■ Expressive power
□ But: All PLs are Turing-complete

■ Ease of learning (e.g., Basic, Python)
■ Open source
■ Standardization: Ensure portability

across platforms
■ Excellent compilers
■ Economics

□ E.g., C# by Microsoft, Objective-C by Apple

29

PL Spectrum

■ Broad classification
□ Declarative (”what to compute”):

E.g., Haskell, SQL, spreadsheets

□ Imperative (”how to compute it”):
E.g., C, Java, Perl

■ Various PL paradigms:

■ Most languages combine multiple
paradigms

Functional

Logic

Statically typed
Dynamically typed

Sequential

Shared-memory
parallel

Distributed-
memory
parallel

Dataflow

30 - 1

Example: Imperative PL

C implementation for GCD:

int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a - b;

else b = b - a;

}

return a;

}

30 - 2

Example: Imperative PL

C implementation for GCD:

int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a - b;

else b = b - a;

}

return a;

}

Statements that
influence subsequent
statements

30 - 3

Example: Imperative PL

C implementation for GCD:

int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a - b;

else b = b - a;

}

return a;

}

Statements that
influence subsequent
statements

Assignments with
side effect of
changing memory

31 - 1

Example: Functional PL

OCaml implementation of GCD

let rec gcd a b =

if a = b then a

else if a > b then gcd b (a - b)

else gcd a (b - a)

31 - 2

Example: Functional PL

OCaml implementation of GCD

let rec gcd a b =

if a = b then a

else if a > b then gcd b (a - b)

else gcd a (b - a)

Recursive function
with two arguments

31 - 3

Example: Functional PL

OCaml implementation of GCD

let rec gcd a b =

if a = b then a

else if a > b then gcd b (a - b)

else gcd a (b - a)

Recursive function
with two arguments

Focus on
mathematical
relationship between
inputs and outputs

32 - 1

Example: Logic PL

Prolog implementation of GCD

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- B > A, C is B-A, gcd(C,A,G).

32 - 2

Example: Logic PL

Prolog implementation of GCD

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- B > A, C is B-A, gcd(C,A,G).

Facts and rules

32 - 3

Example: Logic PL

Prolog implementation of GCD

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- B > A, C is B-A, gcd(C,A,G).

Facts and rules

Focus on logical
relationships
between variables

33

Compilation and Interpretation

Different ways of executing a program

■ Pure interpretation

■ Pure compilation (e.g., C)

■ Mixing compilation and interpretation

□ Compile to bytecode and immediately interpret it

(e.g., Python)

□ Virtual machine with just-in-time compilation

(e.g., Java)

3

4

5

6

38

PL Design vs. Implementation

■ Some PLs are easier to compile than
others

■ E.g., runtime code generation

□ Code to execute: Unknown at compile time

□ Hard to compile

□ Easy to interpret

40

Other Tools

■ Linkers

■ Preprocessors

■ Source-to-source compilers

7

8

9

44

Plan for Today

■ Motivation
□ What the course is about
□ Why it is interesting
□ How it can help you

■ Organization
□ Exercises
□ Grading

■ Introduction
□ Programming languages:

History, paradigms, compilation, interpretation
✔

