Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

About Me: Michael Pradel

= Since 9/2019: Full Professor
at University of Stuttgart

= Before

0 Studies at TU Dresden, ECP (Paris),
and EPFL (Lausanne)
PhD at ETH Zurich, Switzerland
Postdoctoral researcher at UC Berkeley, USA
Assistant Professor at TU Darmstadt
Sabbatical at Facebook, Menlo Park, USA

I I I R

About the Software Lab

= My research group since 2014

s Focus: Tools and techniques for
building reliable, efficient, and secure

software

o Program testing and analysis
o Machine learning, security

= Thesis and job opportunities

Overview

= Motivation «—
o What the course is about
o Why it is interesting
o How it can help you

= Organization
0 Exercises
0 Grading

= Introduction
o Programming languages:

History, paradigms, compilation, interpretation

The Role of Programming

s Programming: Essential form of
expression for a computer scientist
o “The limits of my language mean the limits of
my world.” (Ludwig Wittgenstein)
= Programming languages determine
what algorithms and ideas you can
express

Goal of this Course

Understand how programming
languages (PLs) work

m How are languages defined?
s What language design choices exist?
s What language features could | use?

m How are languages implemented?

Why Learn About PLs?

Enables you to

choose the right PL for a specific purpose
choose among alternative ways to express things

make best use of tools (e.g., debuggers, IDEs,
analysis tools)

understand obscure language features

simulate useful features in languages that lack
them

Concepts vs. Languages

This course is not about

m All details of a specific language

m A systematic walk through a set of languages

Instead, this course is about

m Concepts underlying many languages

m Various languages as examples

Isn’t Knowing {Picka PL} Enough?

s Complex systems:
Built in various languages

o E.g., Facebook/Meta: Wild mix of languages
covering various language paradigms

= New languages arrive regularly
(and old ones fade away)

- 1

Ratings (%)

30

25

20

-
(&}

10

0

Isn’t Knowing {Picka PL} Enough?

TIOBE Programming Community Index

Source: www.tiobe.com

'\”"'ww*\ Y W 'v\./\,'ys

2

_— v oh !

W E I . S g na O pandi i W S A

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

== Python === C Java C++ == C# == Visual Basic JavaScript == PHP == Assembly language SaL

Plan for Today

= Motivation
o What the course is about
o Why it is interesting
o How it can help you

= Organization e=———
0 Exercises
o Grading

= Introduction
o Programming languages:

History, paradigms, compilation, interpretation

Language

= Written material (slides, exercises):
English

= Lectures: German
s Exercise discussions: English

= Final exam: Questions in English,
answers in German or English

11

Schedule

Three weekly slots:
Mon, Wed, Fri, all 11:30am

m But: Not all slots used

m See course page for schedule:
http.//software-lab.org/teaching/summer2023/pp/

12

Lectures

Slides, hand-written notes, etc:

m Made available shortly after each lecture

Lecture videos:

m Old videos available on course page
m This year’s lectures will be recorded

m Recommendation: Use for exam preparation, not
as replacement for live lectures

13

Exercises

= Six graded exercises
= We publish on day X

o On the course page

= You submit your solution by day X+7

o Via llias
= Discussion of exercises after day X+7

0 One discussion session for the entire course

14

llias

Platform for discussions, in-class
dquizzes, and sharing additional material

m Please register for the course
m Use it for all questions related to the course
m Messages sent to all students go via llias

Link to llias course on
software-lab.org/teaching/summer2023/pp/

15

Quizzes During the Lectures

= A few quizzes during each lecture
o Check your understanding

10 Access quizzes via llias

= Up to two bonus points for the final
exam
1 Partial points for answering at all

o Full points for correct answers

16

Questions and Discussions

For any (non-personal) questions:
Use forum in llias

m Preferred language: English

m Answering each other is encouraged

m [eaching assistants and me are monitoring it

17

Grading

= Exercises: Passing is prerequisite for

final exam (“Schein”)
0 SIX exercises
0 Each exercise: 100 points

o Needed to pass:

« At least 30 points in five exercises
« At least 360 total points

o If at least 30 points in all six exercises:
One bonus point for the final exam

0 Your points: Published after each exercise

Final Exam

= Final exam: Open book

o All printed and hand-written material allowed
(incl. slides, textbooks, and a dictionary)

o Tests your understanding, not your knowledge

19

Plagiarism and Cheating

= Exercises are individual
= Any form of cheating and plagiarism
0 Treated like cheating in an exam
o l.e., failing the "Schein”
= Cheating includes
0 Showing your solution to others
o Working together in a solution
o Using a solution from someone else

o Using a solution suggested by an Al tool

20

Reading Material

= Most relevant book:
Programming Language Pragmatics
by Michael L. Scott

= Also interesting:
Concepts of Programming Languages
by Robert W. Sebesta

= Pointers to book chapters and web
resources: Course page

21

Some StatistiCS (summer2022)

m 80/115 students who submitted > 1 exercise(s)
got the “Schein”

m 80/91 students who submitted > 3 exercise(s) got
the “Schein”

m Of those students who got the “Schein”, only 4/79
failed the final exam

22 -

1

Some StatistiCS (summer2022)

m 80/115 students who submitted > 1 exercise(s)
got the “Schein”

m 80/91 students who submitted > 3 exercise(s) got
the “Schein”

m Of those students who got the “Schein”, only 4/79
failed the final exam

— Don’t give up too early!

The “Schein” prepares well for the exam. -

22 -

Some StatistiCS (summer2022)

Exam grades:

1
0

N @

PR DERPE D P RPA SO A

22 -

Some StatistiCS (summer2022)

Exam grades:

1
0

N @

PR DERPE D P RPA SO A

Median grade: 2.3

22 -

Some StatistiCS (summer2022)

Exam grades: cdian grade: 2.3

Students with two
bonus points from

Students with zero
bonus points from

in-lecture quizzes: in-lecture quizzes:

Median grade of 1.7

Median grade of 2.7

3

2

SO A PP R DA D PR >SS D A

1
0

22 -

Plan for Today

= Motivation
o What the course is about
o Why it is interesting
o How it can help you

= Organization
0 Exercises
o Grading

= Introduction e———
o Programming languages:

History, paradigms, compilation, interpretation .

History: From Bits ...

First electronic computers: Programmed
in machine language

m Sequence of bits
m Example: Calculate greatest common divisor
55 89 e5 563 83 ec 04 83 e4 f0O €8 31 00 00 00 89 <c3 e8 2a 00

00 00 39 ¢c3 74 10 8d b6 00 00 00 OO0 39 c3 7e 13 29 c3 39 c3
75 £6 89 1c 24 e8 6e 00 00 00 8b 56d fc c9 c3 29 d8 eb eb 90

24 -

1

History: From Bits ...

First electronic computers: Programmed
in machine language

m Sequence of bits
m Example: Calculate greatest common divisor
55 89 e5 563 83 ec 04 83 e4 f0O €8 31 00 00 00 89 <c3 e8 2a 00

00 00 39 c3 74 10 8d b6 00 00 00 OO 39 c3 7e 13 29 c3 39 c3
75 £6 89 1c 24 e8 6e 00 00 00 8b 5d fc c9 ¢c3 29 d8 eb eb 90

Machine time more valuable than
developer time

24 -

... over Assembly ...

Human-readable abbreviations for
machine language instructions

m Less error-prone, but still very machine-centered
m Each new machine: Different assembly language

m Developer thinks in terms of low-level operations

25 -

1

... over Assembly ...

Greatest common divisor in x86:

pushl
movl
pushl
subl
andl
call
movl
call
cmpl
je

A: cmpl

%hebp

hesp, kebp
Jebx

$4, Yesp
$-16, Yesp
getint
heax, Yebx
getint
heax, hebx
C

heax, hebx

jle
subl
cmpl
jne
movl
call
movl
leave
ret
subl
jmp

D

heax, %ebx
heax, %ebx

A

hebx, (Yesp)
putint

-4 (%ebp), %ebx

Jebx, Jeax
B

25 -

... t0 High-level Languages

= 1950s: First high-level languages
o Fortran, Lisp, Algol

= Developer thinks in mathematical and
logical abstractions

26 -

1

... t0 High-level Languages

Greatest common divisor in Fortran:

subroutine ged iter(value, u, v)
integer, intent(out) :: value
integer, intent(inout) :: u, v
integer :: t

do while(v /=0)
t=u
u=v
v = mod(t, v)
enddo
value = abs (u)
end subroutine gcd iter

26 -

Today: 1000s of Languages

= New languages gain traction regularly
= Some long-term survivors
n Fortran, Cobol, C

27 -

1

Today: 1000s of Languages

= New languages gain traction regularly
= Some long-term survivors
n Fortran, Cobol, C

Poll:
Your favorite programming language?

See LiveVoting in llias

27 -

What Makes a PL Successful?

s EXpressive power
o But: All PLs are Turing-complete

= Ease of learning (e.g., Basic, Python)
= Open source

» Standardization: Ensure portability
across platforms

= Excellent compilers
x Economics
0 E.g., C# by Microsoft, Objective-C by Apple

28

PL Spectrum

s Broad classification
o Declarative ("what to compute”):

E.g., Haskell, SQL, spreadsheets

o Imperative ("how to compute it”):
E.qg., C, Java, Perl

= Various PL paradigms: ©Scauental

Statically typed _ Distributed-
Dynamically typed Shared-memory memory

. parallel parallel
Logic Dataflow . _
= Most languages combine multiple

paradigms 29

Functional

Example: Imperative PL

C implementation for GCD:

int ged(int a, int b) {
while (a !'=b) {
if (a>b) a=a - b;
else b=Db - a;
}

return a;

}

30 -

1

Example: Imperative PL

C implementation for GCD:

int ged(int a, int b)‘{/// Statements that
while (a !=Db) ({ influence subsequent
it fa>ba=a-b" statements

else b=Db - a; €&
} /
return a;

}

30 -

Example: Imperative PL

C implementation for GCD:

int ged(int a, int b)‘{/// Statements that
while (a !=Db) ({ influence subsequent
it fa>ba=a-b" statements

else b=Db - a;

Assignments with
side effect of
changing memory

30 -

Example: Functional PL

OCaml implementation of GCD

let rec ged a b =
if a = b then a
else if a > b then ged b (a — b)
else gcd a (b — a)

31 -

Example: Functional PL

OCaml implementation of GCD

_— Recursive function
with two arguments

let rec gcd a b = 44—
if a = b then a
else if a > b then ged b (a — b)

else gcd a (b — a)

31

-2

Example: Functional PL

OCaml implementation of GCD

_— Recursive function
with two arguments

let rec gcd a b = 44—
if a = b then a
else if a > b then ged b (a — b)

else gcd a (b — a)

“~ f

Focus on
mathematical
relationship between
inputs and outputs

31

-3

Example: Logic PL

Prolog implementation of GCD

gced(A,B,G) :— A =B, G=A.
gced(A,B,G) :-— A > B, C is A-B, gcd(C,B,G) .
ged(A,B,G) :- B> A, C is B-A, gcd(C,A,G) .

32 -

1

Example: Logic PL

Prolog implementation of GCD

gced(A,B,G) :— A =B, G=A.
gced(A,B,G) :-— A > B, C is A-B, gcd(C,B,G) .
gcd(A,B,G) :(- B> A, C is B-A, gcd(C,A,G) . \

Facts and rules

32 -

Example: Logic PL

Prolog implementation of GCD

gced(Ad,B,G) :-— A =B, G=A.
gced(A,B,G) :-— A > B, C is A-B, gcd(C,B,G) .
gcd(A,B,G) :(- B> A, C is B-A, gcd(C,A,G) . \

Facts and rules

Focus on logical
relationships
between variables

32 -

Compilation and Interpretation

Different ways of executing a program

m Pure interpretation
m Pure compilation (e.g., C)
s Mixing compilation and interpretation

0 Compile to bytecode and immediately interpret it
(e.g., Python)
0 Virtual machine with just-in-time compilation

(e.g., Java)

33

\V\/\'{ fv,r(,"'(f'

Souren r‘QD““""

wpke o[gt) Oupet

(omp e

Sounree f‘°3“‘w‘

|
[Cowpilar)
L

\\A"V\A' —D ’\‘ary} Fm’bmw\ — O\LA'[W+

CO\’\A rn\.n.)VD EA'&(coole C&\ (wjf(—"f"UL \vww‘to('h\?"(‘-p

L, ¢ 5 ?bl«\w

\\/\\AA —>

Scm L ‘1103(‘“'“

!

SourL—L -*"'\‘0

-\-c coole

k r\/\ r"('\/\ J v\/\&c(‘ "\4 e

—

\

Eb-kwob
iwk.r‘)vvjif

ﬁ

y

J T/\ (64

Source
‘,goOM “wA

d

(30« Vo») ED*\-L code

(.
r\lc\' —9 Lzb"‘(COO(L
" e~ \/
r - —> ;)'T comnp le
\/ir%vw\)(mach r\}
ocrnl ' OV\AT +

PL Design vs. Implementation

= Some PLs are easier to compile than
others

= E.g., runtime code generation
0 Code to execute: Unknown at compile time
o Hard to compile

0 Easy to interpret

38

Other Tools

s Linkers
= Preprocessors
= Source-to-source compilers

40

Li\«\fuf

Sowven

Lﬂowrlh(

Towse)— F‘OSWW\ [beanes

\7 /
LL?ZQ

ommplde oot progia

CPM pOCerd0¥S

- |

goMC&

TN ¢
i _ b'b', waac (O .Q?era\/_hov\

L Fﬂf"iww)

Nodifred Sowree prige

!
| Cowmpiter j '
]

TQ‘A(‘" (60 ‘RM

_gOurcL' 4o~ <ourg co\Mp‘.(pr

TLA)
Souru, r\@S@QM (L

|
LC@\MP’(‘r 4)
! (o, . wn C)

A{,k,w\q,.l.‘u, [WIT] r\joam J
)

QQW":‘ (e r)
J

Tow y-\— p‘if)mm

Plan for Today

= Motivation
o What the course is about
o Why it is interesting
o How it can help you

= Organization
0 Exercises
o Grading

s Introduction

o Programming languages: V

History, paradigms, compilation, interpretation ,,

