Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

Overview

s Introduction
= A Bit of Scheme
s Evaluation Order

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((y 2))
(let ((y 4)

(x y))
(—y x)))

- 1

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((y 2))
(let ((y 4)

(x y))
(—y x)))

Result: 2

Wake-up Quiz

What does the following Scheme code
evaluate to?

» — :
(let ((y 2)) let binds names
(let ((y 4) to values
(x y¥))

(—y x)))

Result: 2

Wake-up Quiz

What does the following Scheme code
evaluate to?

» — :
(let ((y 2)) let binds names
(let ((y 4) to values
(x ¥))

(—y x)))

\ Scope of bindings:

Result: 2
Second argument only

Wake-up Quiz

What does the following Scheme code

evaluate to?
r—

(let ((y 2)) ~ let binds names
(let ((y 4) to values
(x ¥))
(—y x))) x takes the value

\ of the outer y
Result: 2 Scope of bindings:
Second argument only

Functional Languages

= Functional paradigm: Alternative to
imperative PLs
o Output: Mathematical function of input
0 No internal state, no side effects
= In practice: Fuzzy boundaries
o “Functional” features in many “imperative” PLs
« E.g., higher-order functions
0 “Imperative features” in many “functional” PLs

. E.g., assignment and iteration

Historical Origins

= Lambda calculus
o Alonzo Church, 1930s
= Express computation based on
o Abstraction into functions
. E.g., (A\z.M)
o Function application

. E.g., (M N)

Features

s First-class function values and
higher-order function

= Extensive polymorphism

= List types and operators

= Structured function returns

= Constructors for structured objects
= Garbage collection

- 1

Features

s First-class function values and _$

higher-order function Functions assigned
to variables, passed
as arguments, or

= List types and operators return values

= Extensive polymorphism

= Structured function returns
= Constructors for structured objects
= Garbage collection

Features

= First-class function values and
higher-order function Use a function on
. . —7 different kinds of
= Extensive polymorphism .
values, e.g., using
= List types and operators type inference
= Structured function returns
= Constructors for structured objects

= Garbage collection

Features

» First-class function values and
higher-order function Ideal for recursion

Extensive polvmorohism (handle first
] P u__. element and then

= List typeés and operators recursively the
remainder)

= Structured function returns
= Constructors for structured objects
= Garbage collection

Features

s First-class function values and

higher-order function Functions can
return any

= Extensive polymorphism structured data,

_ e.d., lists and
= List types and operators "~ .

s Structured function returns N

= Constructors for structured objects

= Garbage collection

Features

s First-class function values and
higher-order function

= Extensive polymorphism

= List types and operators

= Structured function returns

= Constructors for structured objects,7

= Garbage collection Construct aggregate
objects inline and

all-at-once

Features

s First-class function values and
higher-order function

= Extensive polymorphism

= List types and operators

= Structured function returns

= Constructors for structured objects

s Garbage collection Necessary because
evaluation tends to create

lots of temporary data

Purely Functional PLs

= Functions depend only on their
parameters

o Not on any other global or local state
1 Order of evaluation is irrelevant
« Eager and lazy evaluation yield same result
s E.g., Haskell
o By Philip Wadler et al., first released in 1990

o Actively used as a research language

Non-Pure Functional PLs

s Mix of functional features with
assighments

s E.g., Scheme
o Dialect of Lisp

0 By Guy Steele and Gerlad Jay Sussman (MIT)
o Eg, OCaml

1 Extends ML with OO features

0 Developed at INRIA (France)

Overview

s Introduction
=z A Bit of Scheme «——
s Evaluation Order

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function
o Remaining expressions: Arguments
= Examples:

(+ 3 4) ((+ 3 4))

10 -

1

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function
o Remaining expressions: Arguments
= Examples:

(+ 3 4) ((+ 3 4))

Applies + function
to 3 and 4.
Evaluates to 7.

10 -

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function

o Remaining expressions: Arguments

= Examples:
(+ 3 4) ((+ 3 4))
Applies + function Tries to call 7 with zero
to 3 and 4. arguments.

Evaluates to 7. Gives runtime error. , ;

Creating Functions

= Evaluating a lambda expression yields
a function

o First argument to 1ambda: Formal parameters
o Remaining arguments: Body of the function
= Example:

(lambda (x) (*x x x))

11 -

Creating Functions

= Evaluating a lambda expression yields
a function

o First argument to 1ambda: Formal parameters
o Remaining arguments: Body of the function
= Example:

(lambda (x) (* x x))

Yields the “square” function

11

-2

Bindings

= Names bound to values with let
o First argument: List of name-value pairs

10 Second argument: Expressions to be evaluated
in order

= Example:

(let ((a 3)
(b 4)
(square (lambda (x) (*x x xX)))
(Plus +))
(sgrt (plus (square a) (square b))))

12 -

1

Bindings

= Names bound to values with let
o First argument: List of name-value pairs

10 Second argument: Expressions to be evaluated
in order

= Example:

(let ((a 3)
(b 4)
(square (lambda (x) (*x x xX)))
(Plus +))
(sgrt (plus (square a) (square b))))

Yields 5.0

12 -

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond
((<32) 1)
(if (<2 3) 45) ((< 4 3) 2)

(else 3))

13 -

1

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond
((<32) 1)
(if (<2 3) 45) ((< 4 3) 2)

Yields 4 (else 3))

13 -

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond Yields 3
((<32) 1)
(1f (<2 3) 45) ((< 4 3) 2)

Yields 4 (else 3))

13 -

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

(define min (lambda (a b) (if (<kab) ab)))

14 -

1

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

Evaluates to 5 if a Iis positive;
runtime type error otherwise

(define min (lambda (a b) (if (<kab) ab)))

14 -

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

Evaluates to 5 if a Iis positive;
runtime type error otherwise

(define min (lambda (a b) (if (<kab) ab)))

Implicitly polymorphic:
Works both for integers and floats.

14 -

Quiz: Scheme Examples

Which of the following yields 7?

; Program 1
2 +5

; Program 2
((lambda (a b) (b a)) 2 9)

; Program 3
((*»1 (+43)))

; Program 4
(1f (>12) (+ 3 4) 5)

15 -

1

Quiz: Scheme Examples

Which of the following yields 7?

; Program 1
2+5 X

; Program 2
((lambda (ab) (-ba)) 29)

; Program 3
((x1(+43))) X

; Program 4
(if >12) (+34)5) X

15 -

Lists

s Central data structure with various
operations

0 car extracts first element
0 cdr extracts all elements but first

0 cons joins a head to the rest of a list

= Examples:

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))

16 -

1

Lists

s Central data structure with various
operations

. "Quote” to
0 car extracts first element orevent
0 cdr extracts all elements but first interpreter
from
0 cons joins a head to the rest of a Iist‘ evaluating
= Examples: '/ (i.e., a literal)

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))

16 -2

Lists

s Central data structure with various
operations

. "Quote” to
0 car extracts first element orevent
0 cdr extracts all elements but first interpreter
from
0 cons joins a head to the rest of a Iist‘ evaluating
= Examples: '/ (i.e., a literal)

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))
Yields 2

16 -3

Lists

s Central data structure with various
operations

_ “Quote” to
0 car extracts first element prevent
o cdr extracts all elements but first interpreter
from
1 cons joins a head to the rest of alist gy 51yating
. Examples: (i.e., a literal)
(car " (2 3 4)) (cdr ’G)) (cons 2 ' (3 4))

Yields 2 Yields (3 4)

16-4

Lists

s Central data structure with various
operations

| “Quote” to
0 car extracts first element prevent
0 cdr extracts all elements but first interpreter
from
1 cons joins a head to the rest of alist gy 51yating
. I.e., a literal)
« Examples: '/ (le.,a
(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))
Yields 2 Yields (3 4) Yields (2 3 4)

16 -5

Assignments

= Side effects via
0 set ! for assignment to variables
0 set—car! for assigning head of list
0 set—cdr! for assigning tail of list

s Example: (et ((x2)
(1" (ab)))
(set! x 3)
(set—car! 1 ' (c d))
(set—cdr! 1 ' (e))
(cons x 1))

17 -

1

Assignments

= Side effects via
0 set ! for assignment to variables
0 set—car! for assigning head of list
0 set—cdr! for assigning tail of list

s Example: (et ((x2)
(1" (ab)))
(set! x 3)
(set—car! 1 ' (c d))
(set—cdr! 1 ' (e))
(cons x 1))

Yields (3 (c d) e)

17 -

{ = (& b)

« -

L = k(ao\> l”)
L= ((cd)e)

107

Sequencing

= Cause interpreter to evaluate multiple
expressions one after another with
begin

= Example:

(let
((n "there"))
(begin
(display "hi ")
(display n)))

18 -

1

Sequencing

= Cause interpreter to evaluate multiple
expressions one after another with
begin

= Example:

(let
((n "there"))
(begin
(display "hi ")
(display n))) Prints "hi there”

18 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n)
(do ((0 (+i1))
(a 0 b)
b1l (+ab)))
((=1n) b)
(display b)
(display " "))) 5)

19 -

1

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) ts initial val
b1 (+ab))) m its initial value
((=1n) b) m expression to compute
(display b) next value

(display " "))) 5)

19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do (10 (+11)) m specify a new variable
(a 0 b) e
b1l (+ab))) m its initial value
—((=1n) b) m expression to compute
(display b)

Termination (4icp1ay " ™)) 5) next value

condition and
expression to

be returned
19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) e
b1 (+ab))) m its initial value
I_’((= i n) b) m expression to compute
I (display b) next value
Term!rfatlon (display "oy) 5)
condition and Body of

expression to
be returned

the loop

19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) e
b1 (+ab))) m its initial value
I_’((= i n) b) m expression to compute
Terminati (display b) next value
erm!rfatlon (display " "))) 5)
COI‘IdItIO.n and Body of
expression to the loop

be returned : : :
Computes first n Fibonacci numbers ., -

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval

= Example:
(eval (cons '+ (list "2 '3)))

20 -

1

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval Constructs a list from

the given arguments
= Example:

(eval (cons '+ (list "2 '3)))

20 -

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval Constructs a list from

the given arguments
= Example:

(eval (cons '+ (list "2 '3)))

Yields 5

20 -

Overview

s Introduction
s A Bit of Scheme
s Evaluation Order «=——

21

Evaluation Order

= In what order to evaluate
subcomponents of an expression?

0 Applicative-order: Evaluate arguments before
passing them to the function

o Normal-order: Pass arguments unevaluated
and evaluate once used

= Scheme uses applicative-order

22

(d&,(?vq Jouble (lawbda () (+ x x >)>

A”’\A\cNL‘JG —ocoer

(ok{)ulo\.t (* < UTB>
5 (dewbu AZD

—_-;(/k AL A)

= L4

rDO\.V\) Q)/tL(q WQ(‘L

N@Mq/{ ordac
(AOuE\.L ('F‘ S ""))
S (+ (+ 34) (# & 4))

= (+ a2 (¢ 3 %))

=) (+ 12 12.)
= &4

w\"\'(/\ WD'MA‘ OfO‘.U ‘

108

{0'{‘&\»'(sw;‘\‘c(q ((@mloo(a
(ce\,\o\ ((< X O) 0\3
((= » 0) &)

(> x o)

AW\A‘.:«A\‘VQ - ool

(cwitel -1

S [switel =1 2 (v 2 3)

— ng§¥ubs “/\ 3 S\ (“" '; L"»

o (emiveh -4 3 S o)

((« - O 3)
(= -1 ©) 5)
(> -7 O) +)

= . D5

> (cond

(1) (+23) (+3 %
(+3 4))

))

109

()(O\\oc,)

e ’BO{VJ &)/e\ﬂ a We'(“
W\"‘"l" AYrL‘ca\,-L'JQ WOL"J

MWWQA‘Mr
(ohcl -4 (r A7) (#23) (+3 4))

= (cod (= -1 0) (+ 1 D)
K(: A 03 k+ 13))

Impact on Correctness

s Evaluation order also affects
correctness

= E.g., runtime error when evaluating an
“unneeded” subexpression

o Terminates program in applicative-order

7 Not noticed in normal-order

25

Lazy Evaluation

= Evaluate subexpressions on-demand

= Avoid re-evaluating the same
expression

0 Memorize its result
= Transparent to programmer only in PL
without side effects, e.g., Haskell

0 In PLs with side effects, e.g., Scheme:
Programmer can explicitly ask for lazy
evaluation with delay 26

Quiz: Evaluation Order

(define diff (lambda (xy) (- xy)))
(define £ (lambda (x) (* x (+ 1 x))))

How many evaluation steps are needed to
evaluate

(fE (diff 3 4))

under applicative-order and normal-order
evaluation?

27 -

1

Quiz: Evaluation Order

(define diff (lambda (xy) (- xy)))
(define £ (lambda (x) (* x (+ 1 x))))

How many evaluation steps are needed to
evaluate

(fE (diff 3 4))

under applicative-order and normal-order
evaluation?

5and 7

27 -

A”)\,;ca\—'-W(oc e

:(g r)
S (=8)

» (f -1)
S (x
Six =1 ©)
5 O

(~ ”/‘5\

= (¥
o (x4 \dd 3 4)
R R)
N I R

S o)

)

105

Overview

s Introduction
s A Bit of Scheme
s Evaluation Order ‘/

29

