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Data Abstraction

■ Goal: Describe class of memory
objects and their associated behavior

■ Abstract data type

□ Set of values and set of operations

■ Example: Stack

□ Values: Data on stack

□ Operations: push, pop, etc.
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Classes and Objects

■ Classes: Form of data abstraction

□ Encapsulation and information hiding

■ Objects

□ Instances of classes (in class-based PLs, e.g.,

Java, C++)

□ Primary entities (in prototype-based PLs, e.g.,

Smalltalk, JavaScript)
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Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding
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Inheritance

■ Code reuse by defining a new
abstraction as extension or refinement
of an existing abstraction

■ Subclass inherits members of
superclass

□ Can add members

□ Can modify members
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Subclasses vs. Subtypes

Are subclasses a subtype of the
superclass?

■ In principle, no

□ Subclassing is about reusing code inside a class

□ Subtyping enables code reuse in clients of a class

• Client written for supertype works with any

subtype

■ In practice, most PLs merge both concepts
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Liskov’s Substitutability Principle

■ Each subtype should behave like the
supertype when being used through
the supertype

■ Let B be a subtype of A
□ Any object of type A may be replaced by an

object of type B

□ Clients programming against A will also work

with objects of type B

“A behavioral notion of subtyping” by B. Liskov and J. Wing,
ACM T Progr Lang Sys, 1994
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Demo

Liskov.java



9

Modifying Inherited Members

■ Can a subclass modify inherited
members?

■ Answer depends on the PL

□ Java: Any method can be overridden

□ C++: Only methods declared as virtual by

the base class can be overridden
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Demo

Virtual.cpp
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Modifying Inherited Members (2)

■ Can a subclass hide inherited
members?

□ Again, answer depends on the PL

■ Java and C#: Subclass can neither
increase nor decrease the visibility of
members

■ Eiffel: Subclass can both restrict and
increase visibility
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Modifying Inherited Members (3)

■ Public/protected/private inheritance
in C++

□ Makes all inherited members at most

public/protected/private

□ E.g., all members (incl. public members) that

are privately inherited are private in the

subclass

□ Private inheritance does not imply a subtype
relationship
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Modifying Inherited Members (4)

Accessibility in derived class:

Inheritance Private
members

Protected
members

Public
members

Public Yes Yes Yes
Protected No Yes Yes
Private No Yes Yes
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Demo

Inheritance.cpp
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Modifying Inherited Members (4)

■ More C++ rules
□ Subclass can decrease visibility of superclass

members, but never increase it

□ Subclass can hide superclass methods by

deleting them
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Quiz: Inheritance

Where is the
compilation
error (and why)?

1 class A {
2 public:
3 void foo() {}
4
5 protected:
6 void bar() {}
7 };
8 class B : private A {
9 };

10 class C : public B {
11 public:
12 void baz() {
13 this->bar();
14 }
15 };
16 int main() {
17 C c;
18 c.baz();
19 }
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Quiz: Inheritance

Where is the
compilation
error (and why)?

1 class A {
2 public:
3 void foo() {}
4
5 protected:
6 void bar() {}
7 };
8 class B : private A {
9 };

10 class C : public B {
11 public:
12 void baz() {
13 this->bar();
14 }
15 };
16 int main() {
17 C c;
18 c.baz();
19 }

Error: bar is not visible
■ B inherits A as private

class, hence, all

members are private

■ C cannot access

privatemembers of B
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Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding
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Initialization

■ Each class: Zero, one, or more
constructors

■ Distinguished by

□ Number and type of arguments (C++, Java, C#)

□ Name of the constructor (Eiffel)
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Example: Eiffel Constructors

class COMPLEX
creation
new_cartesian, new_polar

feature {ANY}
x, y: REAL

new_cartesian(x_val, y_val : REAL) is
-- (...) constructor implementation

new_polar(rho, theta : REAL) is
-- (...) constructor implementation

-- (...) other members
end
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Implicit vs. Explicit Initialization

■ Some PLs (e.g., Java): Constructor
must always be called explicitly

■ Other PLs (e.g., C++): Constructor
sometimes called implicitly

□ Value model of variables: Object must be

initialized

□ Declarating a variable implicitly calls

zero-argument constructor
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Implicit vs. Explicit Initialization (2)

Example: Java

class Foo { ... }

Foo f;

Example: C++

class Foo { ... }

Foo f;

■ Uninitialized

reference to a Foo

object

■ Has value null

■ Implicitly initialized

with Foo’s default

constructor

■ Variable contains the

object
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Superclass Constructors

■ During initialization of subclass, also
initialize inherited superclass fields

// Java example
class A { ... }

class B extends A {
B(int k) {
super(k);

}
}

// C++ example
class A { ... }

class B : public A {
public:
B(int k) : A(k) {
..

}
}
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Superclass Constructors

■ During initialization of subclass, also
initialize inherited superclass fields

// Java example
class A { ... }

class B extends A {
B(int k) {
super(k);

}
}

// C++ example
class A { ... }

class B : public A {
public:
B(int k) : A(k) {
..

}
}

Call to super constructor
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Execution Order of Constructors

■ Constructor(s) of base class(es)
execute before constructors of
subclass

□ C++: Implicit in PL

□ Java: Enforced by not allowing any statement
before super()
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Destructors

■ In some PLs (e.g., C++), each class
can define a destructor

■ Called when
□ Object goes out of scope

□ delete operator called on object

■ Optional, but highly recommended if
class dynamically allocates memory
□ Must free memory in destructor

(otherwise: memory leak)
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Destructors: Example

// C++ example
cout << string("Hi there").length(); // prints 8
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Destructors: Example

// C++ example
cout << string("Hi there").length(); // prints 8

■ First, calls string(const char*)

constructor

■ Afterwards, calls ˜string() destructor

because object goes out of scope
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Execution Order of Destructors

■ Destructor of subclass called before
destructor(s) of superclass(es)

□ Reverse order of constructors

□ Intuition: First clean up added state, then

inherited state
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Finalization

■ Java and C#: No destructors but
finalizers

■ Called immediately before object gets
garbage-collected

□ Use to clean up resources, e.g., file handles

□ Note: May never be called, e.g., in

short-running programs

• finalize has been deprecated in Java 9
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Demo

Immortal.java



29 - 1

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}
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Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A



29 - 3

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A
Implicitly creates
object of class C
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Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A

Class with two
superclasses
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Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A

Constructor
and destructor
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Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A
Execution order of
constructors and
destructors
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Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding
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Static vs. Dynamic Method Binding

■ Given: Subclass that defines a method
already defined in the superclass

■ How to decide which method gets
called?

□ Based on type of variable

□ Based on type of object the variable refers to
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Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();
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Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Subclasses also define method
print mailing label
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Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Variables of subtypes

Variables of supertype
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Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Methods of
subclasses
called
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Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Which methods
to call here?
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Static Method Binding

■ Answer 1: Bind methods based on
type of variable

□ Can be statically resolved (i.e., at compile time)

□ Will call print mailing label of person

because x and y are pointers to person
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Dynamic Method Binding

■ Answer 2: Bind methods based on
type of object the variable refers to

□ In general, cannot be resolved at compile time,

but only at runtime

□ Will call print mailing label of student

for x because x points to a student project

(and likewise for y and professor)
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Pros and Cons

Static method
binding

■ No performance

penalty because

resolved at

compile-time

■ But: Subclass

cannot control its

own state

Dynamic method
binding

■ Subclass can

control its state

■ But: Performance

penalty of runtime

method dispatch
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Example (C++)

class text_file {
char *name;
long position;
public:
void seek(long offset) {
// (...)

}
};

class read_ahead_text_file : public text_file {
char *upcoming_chars;
public:
void seek(long offset) {

// redefinition
}

}
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Example (C++)

class text_file {
char *name;
long position;
public:
void seek(long offset) {
// (...)

}
};

class read_ahead_text_file : public text_file {
char *upcoming_chars;
public:
void seek(long offset) {

// redefinition
}

}

■ Subclass needs to change

upcoming chars in seek

■ But with static method binding,

cannot guarantee that it gets

called
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Support in Popular PLs

Static
method
binding

Dynamic
method
binding
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Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Dynamic binding
for all methods:
Smalltalk,
Python, Ruby
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Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Dynamic binding by
default, but method or
class can be marked as not
overridable: Java, Eiffel



37 - 4

Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Static binding by default,
but programmer can
specify dynamic binding:
C++, C#
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Java, Eiffel: Final/frozen Methods

■ Mark individual methods (or classes)
as non-overridable

□ Java: final keyword for methods and classes

□ Eiffel: frozen keyword for individual methods
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C++, C#: Overriding vs. Redefining

■ C++: Superclass must mark method
as virtual to allow overriding

■ C#: Subclass must mark method with
override to override the superclass
method

Override method:
Dynamic binding

Redefine methods
with same name:
Static binding
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Demo

Virtual.cpp
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Quiz: Method Binding

# Pseudo code
class A:
void foo():
...

void bar():
print("a")

class B extends A:
void bar():
print("b")

A x = new B()
B y = x
x.bar() # call 1
y.bar() # call 2

What is printed when

a) PL uses dynamic method
binding

b) PL uses static method
binding



41 - 2

Quiz: Method Binding

# Pseudo code
class A:
void foo():
...

void bar():
print("a")
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Quiz: Method Binding

# Pseudo code
class A:
void foo():
...

void bar():
print("a")

class B extends A:
void bar():
print("b")

A x = new B()
B y = x
x.bar() # call 1
y.bar() # call 2

What is printed when

a) PL uses dynamic method
binding

b) PL uses static method
binding
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Method Lookup

With dynamic method binding, how does
the program find the right method to
call?

■ Most common implementation:

Virtual method table (“vtable”)

■ Every object points to table with its methods

■ Table is shared among all instances of a class
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Implementation of Inheritance

■ Representation of subclass instance,
including its vtable: Fully compatible
with superclass

□ Can use subclass instance like a superclass

instance without additional code
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Quiz: Data Abstraction

Which of the following is true?

■ Java enforces Liskov’s substitutability principle.

■ Static and dynamic method binding matter only in

PLs that support inheritance.

■ Subtyping is about code reuse in clients,

subclassing is about code reuse in classes.

■ In C++, destructors implicitly free all memory

allocated in the constructor.
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Quiz: Data Abstraction
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■ Static and dynamic method binding matter only in

PLs that support inheritance.
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■ In C++, destructors implicitly free all memory

allocated in the constructor.


