
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Data Abstraction

2

Data Abstraction

■ Goal: Describe class of memory
objects and their associated behavior

■ Abstract data type

□ Set of values and set of operations

■ Example: Stack

□ Values: Data on stack

□ Operations: push, pop, etc.

3

Classes and Objects

■ Classes: Form of data abstraction

□ Encapsulation and information hiding

■ Objects

□ Instances of classes (in class-based PLs, e.g.,

Java, C++)

□ Primary entities (in prototype-based PLs, e.g.,

Smalltalk, JavaScript)

4

Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding

5

Inheritance

■ Code reuse by defining a new
abstraction as extension or refinement
of an existing abstraction

■ Subclass inherits members of
superclass

□ Can add members

□ Can modify members

6

Subclasses vs. Subtypes

Are subclasses a subtype of the
superclass?

■ In principle, no

□ Subclassing is about reusing code inside a class

□ Subtyping enables code reuse in clients of a class

• Client written for supertype works with any

subtype

■ In practice, most PLs merge both concepts

7

Liskov’s Substitutability Principle

■ Each subtype should behave like the
supertype when being used through
the supertype

■ Let B be a subtype of A
□ Any object of type A may be replaced by an

object of type B

□ Clients programming against A will also work

with objects of type B

“A behavioral notion of subtyping” by B. Liskov and J. Wing,
ACM T Progr Lang Sys, 1994

8

Demo

Liskov.java

9

Modifying Inherited Members

■ Can a subclass modify inherited
members?

■ Answer depends on the PL

□ Java: Any method can be overridden

□ C++: Only methods declared as virtual by

the base class can be overridden

10

Demo

Virtual.cpp

11

Modifying Inherited Members (2)

■ Can a subclass hide inherited
members?

□ Again, answer depends on the PL

■ Java and C#: Subclass can neither
increase nor decrease the visibility of
members

■ Eiffel: Subclass can both restrict and
increase visibility

12

Modifying Inherited Members (3)

■ Public/protected/private inheritance
in C++

□ Makes all inherited members at most

public/protected/private

□ E.g., all members (incl. public members) that

are privately inherited are private in the

subclass

□ Private inheritance does not imply a subtype
relationship

13

Modifying Inherited Members (4)

Accessibility in derived class:

Inheritance Private
members

Protected
members

Public
members

Public Yes Yes Yes
Protected No Yes Yes
Private No Yes Yes

14

Demo

Inheritance.cpp

15

Modifying Inherited Members (4)

■ More C++ rules
□ Subclass can decrease visibility of superclass

members, but never increase it

□ Subclass can hide superclass methods by

deleting them

16 - 1

Quiz: Inheritance

Where is the
compilation
error (and why)?

1 class A {
2 public:
3 void foo() {}
4
5 protected:
6 void bar() {}
7 };
8 class B : private A {
9 };

10 class C : public B {
11 public:
12 void baz() {
13 this->bar();
14 }
15 };
16 int main() {
17 C c;
18 c.baz();
19 }

16 - 2

Quiz: Inheritance

Where is the
compilation
error (and why)?

1 class A {
2 public:
3 void foo() {}
4
5 protected:
6 void bar() {}
7 };
8 class B : private A {
9 };

10 class C : public B {
11 public:
12 void baz() {
13 this->bar();
14 }
15 };
16 int main() {
17 C c;
18 c.baz();
19 }

Error: bar is not visible
■ B inherits A as private

class, hence, all

members are private

■ C cannot access

privatemembers of B

17

Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding

18

Initialization

■ Each class: Zero, one, or more
constructors

■ Distinguished by

□ Number and type of arguments (C++, Java, C#)

□ Name of the constructor (Eiffel)

19

Example: Eiffel Constructors

class COMPLEX
creation
new_cartesian, new_polar

feature {ANY}
x, y: REAL

new_cartesian(x_val, y_val : REAL) is
-- (...) constructor implementation

new_polar(rho, theta : REAL) is
-- (...) constructor implementation

-- (...) other members
end

20

Implicit vs. Explicit Initialization

■ Some PLs (e.g., Java): Constructor
must always be called explicitly

■ Other PLs (e.g., C++): Constructor
sometimes called implicitly

□ Value model of variables: Object must be

initialized

□ Declarating a variable implicitly calls

zero-argument constructor

21

Implicit vs. Explicit Initialization (2)

Example: Java

class Foo { ... }

Foo f;

Example: C++

class Foo { ... }

Foo f;

■ Uninitialized

reference to a Foo

object

■ Has value null

■ Implicitly initialized

with Foo’s default

constructor

■ Variable contains the

object

22 - 1

Superclass Constructors

■ During initialization of subclass, also
initialize inherited superclass fields

// Java example
class A { ... }

class B extends A {
B(int k) {
super(k);

}
}

// C++ example
class A { ... }

class B : public A {
public:
B(int k) : A(k) {
..

}
}

22 - 2

Superclass Constructors

■ During initialization of subclass, also
initialize inherited superclass fields

// Java example
class A { ... }

class B extends A {
B(int k) {
super(k);

}
}

// C++ example
class A { ... }

class B : public A {
public:
B(int k) : A(k) {
..

}
}

Call to super constructor

23

Execution Order of Constructors

■ Constructor(s) of base class(es)
execute before constructors of
subclass

□ C++: Implicit in PL

□ Java: Enforced by not allowing any statement
before super()

24

Destructors

■ In some PLs (e.g., C++), each class
can define a destructor

■ Called when
□ Object goes out of scope

□ delete operator called on object

■ Optional, but highly recommended if
class dynamically allocates memory
□ Must free memory in destructor

(otherwise: memory leak)

25 - 1

Destructors: Example

// C++ example
cout << string("Hi there").length(); // prints 8

25 - 2

Destructors: Example

// C++ example
cout << string("Hi there").length(); // prints 8

■ First, calls string(const char*)

constructor

■ Afterwards, calls ˜string() destructor

because object goes out of scope

26

Execution Order of Destructors

■ Destructor of subclass called before
destructor(s) of superclass(es)

□ Reverse order of constructors

□ Intuition: First clean up added state, then

inherited state

27

Finalization

■ Java and C#: No destructors but
finalizers

■ Called immediately before object gets
garbage-collected

□ Use to clean up resources, e.g., file handles

□ Note: May never be called, e.g., in

short-running programs

• finalize has been deprecated in Java 9

28

Demo

Immortal.java

29 - 1

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

29 - 2

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A

29 - 3

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A
Implicitly creates
object of class C

29 - 4

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A

Class with two
superclasses

29 - 5

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A

Constructor
and destructor

29 - 6

Quiz: Initialization & Finalization

What does the following C++ code print?
class A {
public:
A() { cout << "A"; }
Ã() { cout << "̃ A"; }

};
class B {
public:
B() { cout << "B"; }
B̃() { cout << "̃ B"; }

};

class C :
public A, private B {

public:
C() { cout << "C"; }
C̃() { cout << "̃ C"; }

};

int main() {
C c;

}

Result: ABC˜C˜B˜A
Execution order of
constructors and
destructors

30

Overview

■ Inheritance

■ Initialization and Finalization

■ Dynamic Method Binding

31

Static vs. Dynamic Method Binding

■ Given: Subclass that defines a method
already defined in the superclass

■ How to decide which method gets
called?

□ Based on type of variable

□ Based on type of object the variable refers to

32 - 1

Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

32 - 2

Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Subclasses also define method
print mailing label

32 - 3

Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Variables of subtypes

Variables of supertype

32 - 4

Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Methods of
subclasses
called

32 - 5

Example
class person { ... }
class student : public person { ... }
class professor : public person { ... }

void person::print_mailing_label() { ... }
void student::print_mailing_label() { ... }
void professor::print_mailing_label() { ... }

student s;
professor p;

person *x = &s;
person *y = &p;

s.print_mailing_label();
p.print_mailing_label();

x->print_mailing_label();
y->print_mailing_label();

Which methods
to call here?

33

Static Method Binding

■ Answer 1: Bind methods based on
type of variable

□ Can be statically resolved (i.e., at compile time)

□ Will call print mailing label of person

because x and y are pointers to person

34

Dynamic Method Binding

■ Answer 2: Bind methods based on
type of object the variable refers to

□ In general, cannot be resolved at compile time,

but only at runtime

□ Will call print mailing label of student

for x because x points to a student project

(and likewise for y and professor)

35

Pros and Cons

Static method
binding

■ No performance

penalty because

resolved at

compile-time

■ But: Subclass

cannot control its

own state

Dynamic method
binding

■ Subclass can

control its state

■ But: Performance

penalty of runtime

method dispatch

36 - 1

Example (C++)

class text_file {
char *name;
long position;
public:
void seek(long offset) {
// (...)

}
};

class read_ahead_text_file : public text_file {
char *upcoming_chars;
public:
void seek(long offset) {

// redefinition
}

}

36 - 2

Example (C++)

class text_file {
char *name;
long position;
public:
void seek(long offset) {
// (...)

}
};

class read_ahead_text_file : public text_file {
char *upcoming_chars;
public:
void seek(long offset) {

// redefinition
}

}

■ Subclass needs to change

upcoming chars in seek

■ But with static method binding,

cannot guarantee that it gets

called

37 - 1

Support in Popular PLs

Static
method
binding

Dynamic
method
binding

37 - 2

Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Dynamic binding
for all methods:
Smalltalk,
Python, Ruby

37 - 3

Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Dynamic binding by
default, but method or
class can be marked as not
overridable: Java, Eiffel

37 - 4

Support in Popular PLs

Static
method
binding

Dynamic
method
binding

Static binding by default,
but programmer can
specify dynamic binding:
C++, C#

38

Java, Eiffel: Final/frozen Methods

■ Mark individual methods (or classes)
as non-overridable

□ Java: final keyword for methods and classes

□ Eiffel: frozen keyword for individual methods

39

C++, C#: Overriding vs. Redefining

■ C++: Superclass must mark method
as virtual to allow overriding

■ C#: Subclass must mark method with
override to override the superclass
method

Override method:
Dynamic binding

Redefine methods
with same name:
Static binding

40

Demo

Virtual.cpp

41 - 1

Quiz: Method Binding

Pseudo code
class A:
void foo():
...

void bar():
print("a")

class B extends A:
void bar():
print("b")

A x = new B()
B y = x
x.bar() # call 1
y.bar() # call 2

What is printed when

a) PL uses dynamic method
binding

b) PL uses static method
binding

41 - 2

Quiz: Method Binding

Pseudo code
class A:
void foo():
...

void bar():
print("a")

class B extends A:
void bar():
print("b")

A x = new B()
B y = x
x.bar() # call 1
y.bar() # call 2

What is printed when

a) PL uses dynamic method
binding

b) PL uses static method
binding

41 - 3

Quiz: Method Binding

Pseudo code
class A:
void foo():
...

void bar():
print("a")

class B extends A:
void bar():
print("b")

A x = new B()
B y = x
x.bar() # call 1
y.bar() # call 2

What is printed when

a) PL uses dynamic method
binding

b) PL uses static method
binding

42

Method Lookup

With dynamic method binding, how does
the program find the right method to
call?

■ Most common implementation:

Virtual method table (“vtable”)

■ Every object points to table with its methods

■ Table is shared among all instances of a class

96

44

Implementation of Inheritance

■ Representation of subclass instance,
including its vtable: Fully compatible
with superclass

□ Can use subclass instance like a superclass

instance without additional code

97

46 - 1

Quiz: Data Abstraction

Which of the following is true?

■ Java enforces Liskov’s substitutability principle.

■ Static and dynamic method binding matter only in

PLs that support inheritance.

■ Subtyping is about code reuse in clients,

subclassing is about code reuse in classes.

■ In C++, destructors implicitly free all memory

allocated in the constructor.

46 - 2

Quiz: Data Abstraction

Which of the following is true?

■ Java enforces Liskov’s substitutability principle.

■ Static and dynamic method binding matter only in

PLs that support inheritance.

■ Subtyping is about code reuse in clients,

subclassing is about code reuse in classes.

■ In C++, destructors implicitly free all memory

allocated in the constructor.

