Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
31

Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection «=——
= Iteration

s Recursion

32

Selection

= Branch that depends on a condition
= Different syntactic variants
o If-else statements (sometimes with else-if)

0 Case/switch statements

33

If Statements

Syntactic variants across PLs

Algol 60 and its Lisp and its

descendants: descendants:

if (A == B) then ... (cond

else if (A == C) then ... ((= A B)

else ... (...))
((=AC)

Bash (...))

if [$A = $B] (T

then ... (...))

elif [$A = $C])

then ...

else ...

fi

C@vv\@);l,or’s'mn % ‘p - g’ka\ \MCVL“S

L ((A4>R) and (€>DD) or
(E#F) Heern

e - clause
Ase
(}34 - Soms€
. L
chgrd —circu d LA
N 0\«\\/\0/\"\\0\/!
LZ:

L3

cA:
c2-=5
;£ N 2 L \30% L4

"
>

: «\ >¢ L4
,(, 2 3040

Aaen _ clamse
Sa*o L3

e - clomce

39

Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

— Ada syntax
case ... — potentially complicated expression
if

when 1 => clause A

when 2 | 7 => clause B

when 3..5 = clause C

when 10 => clause D

when others => clause E
end case;

36 -

1

Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

— Ada syntax
case ... — potentially complicated expression
if

when| 1 >|clause A

when|2 | 7 PB>|clause B

when|3..5 >|clause C

when| 10 >|clause D

when|others > |clause E
end case;

Labels Arms

36 -

40

C@m'o\‘(o«koh 3& CMc/S\,.;;‘\‘O‘A Clatewre ts

cAia .. (cMculode contoUi. exvﬁ.)
| J
£ Ap A qoto LA v
clavse _ A Lu: o 1FEAV 30% o
Aot L6 classe - D
s e so%ro L2 A -
LA #F aoto L3 < o
LZ: Q,\MsL-B L6
AQ&O Lé
LS if oA <32 y&o L& bisao‘wuﬁbﬂ:
7& 1 >S5 3%% LY Liwear f“cs r“movb\ﬂ
lome - C 0\5&&6““‘”+ 829

A L Lb

i‘*p"\'ﬁht(« -bas—eo‘ Co\,w?\kawkmn

T & LA (errrtss:ou. 4)

g‘ LS a AAVRV\"QJQ ;

> Covr\awwl- Awme \)\MN\/’
5 L2 | b ik ar
&

&

X

Variations Across PLs

= Case/switch varies across PLs
1 What values are allowed in labels?
0 Are ranges allowed?
o Do you need a default arm?

o What happens if the value does not match?

39

Fall-Through Case/Switch

C/C++/Java

m Each expression

switch (/* expression %/) {
case 1l: clause A

break;
needs its own case 2:
case 7: clause B
label (no ranges) break;
case 3:

= Control flow “falls case 4:

through”, unless case 5: clause C

break;
stopped by break case 10: clause D

break;
statement default: clause E

break;

40

Quiz: Switch/Case

What does the following C++ code print?

int x = 7;

switch (x)

{
case 8: { x —= x;
case 7: { x += x;
case 6: { x—=05; }

default: { x+=1; }
}

std: :cout << x;

41 -

Quiz: Switch/Case

What does the following C++ code print?

int x =7;
switch (x)
{

case 8: { x —= x;
case 7: { x += x; } «— Each of these is
case 6: { x == 5; } «— oyecuted (because

default: { x+=1; } =
} no break statement)

std: :cout << x;

Result: 10

41

-2

Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection
s lteration «——

s Recursion

42

lteration

s Essential language construct

0 Otherwise: Amount of work done is linear to

program size

= Two basic forms of loops

0 Enumeration-controlled:
Once per value in finite set

o Logically controlled:
Until Boolean expression is false

43

Enumeration-controlled Loops

= Most simple form: Triple of
o Initial value
o Bound

o Step size

Fortran 90: Modula-2:

doi=1, 10, 2 FOR i :=1 TO 10 BY 2 DO

enddo; END

44 -

1

Enumeration-controlled Loops

= Most simple form: Triple of
o Initial value
o Bound

o Step size

Fortran 90: Modula-2:

doi=1, 10, 2 FOR i :=1 TO 10 BY 2 DO

enddo; END

Iterations withi=1,3,5,7,9

44 -

Semantic Variants

Different PLs offer different variants

m Can you leave the loop in the middle?
m Can you modify the loop variable?

m Can you modify the values used to compute the
loop bounds?

m Can you read the loop variable in/after the loop?

45

lterators

= Special enumeration-controlled loop:
Iterates through any kind of
set/sequence of values
0 E.g., nodes of a tree or elements of a collection
= Decouples two algorithms

0 How to enumerate the values
0 How to use the values

s Three flavors

o “True” iterators, iterator objects, first-class
functions

46

“True’ lterators a.k.a Generators

= Subroutine with yield statements

0 Each yield “returns” another element
= Popular, e.g., in Python, Ruby, and C#
= Used ina for loop

0 Example (Python):

range is a built—in iterator
for 1 in range(first, last, step):

47

Example: Binary Tree

class BinTree:
def init (self, data):
self.data = data
self.lchild = self.rchild = None

other methods: insert, delete, lookup,

def preorder (self) :
1f self.data is not None:
yield self.data
1f self.lchild is not None:

for d in self.lchild.preorder() :

yield d
if self.rchild is not None:

for d in self.rchild.preorder() :

yield d

48

Iterator Objects

= Regular object with methods for
o Initialization
o Generation of next value
o Test for completion

= Popular, e.g., in Java and C++

= Used in for loop

for (Iterator i = c.iterator(); i.hasNext();) {
. = i.next();
}

49 -

1

Iterator Objects

= Regular object with methods for

o Initialization

0 Test for completion
= Popular, e.g., in Java and C++

= Generation of next value

= Used in for loop

for (Iterator i =

v

c.iterator()|;

1.hasNext () ;

}

.. =[Tnext();] T

)

{

49 -

Iterator Objects

= Regular object with methods for
o Initialization
o Generation of next value
o Test for completion

= Popular, e.g., in Java and C++

= Used in for loop

for (Iterator i = c.iterator(); i.hasNext();) {
. = i.next();

} \ Since Java 5 for (E1 te:oa

>

}

{

49 -

Example: Binary Tree

class BinTree<T> implements Iterable<T> {
BinTree<T> left; BinTree<T> right; T val;

// other methods: insert, delete, lookup

public Iterator<T> iterator() ({
return new Treelterator(this);
}

private class TreelIterator implements Iterator<T> {
public boolean hasNext () {
... // check if there is another element
}

public T next () {
... // return the next element
}

public void remove() {
throw new UnsupportedOperationException() ;

}}} 50

Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step f)
(Lf (<= low high)
(begin
(£ 1low)
(uptoby (+ low step) high step f))

0)))

o1 -

Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element——

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step [£]<
(if (<= low high)
(begin
(£ 1low)
(uptoby (+ low step) high step f))

())))

o1 -

Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define ob] _
(1anbd2pt(1m% high step £)<— Defines a function

(Lf (<= low high) :
beqin with four arguments
(£ 1low)
(uptoby (+ low step) high step f))

0)))

51

-3

Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step f)

(if (<= low high) Calls £ with the next
e element

(uptoby (+ low step) high step f))
))))

o1 -

Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptaby Recursively calls

(lambda (low high step f) uptoby to handle the
(if (<= low high)

(begin remaining elements
(f low) /

(uptoby (+ low step) high step f))
))))

51

-5

Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream() .filter (e —> e.sameProp > 5)

o E.g., JavaScript

myArray.filter (e => e.sameProp > 5)

92 - 1

Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream()I.filterfe —> e.sameProp > 5)

|
Iterates through all elements
0 E.g., JavaScript and returns a filtered subset

myArray./filter(eé => e.sameProp > 5)

92 -2

Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream() .filter‘e —> e.sameProp > 5) |

|
Boolean function that decides

0 E.g., JavaScript which elements to keep

I
myArray.filter(e => e.someProp > 5)

52 -3

Logically Controlled Loops

Whether to continue to iterate decided
through a Boolean expression

m Pre-test: while (cond) {

}

m Mid-test: for (;;) {

:|.f . (cond) break
}

m Post-test: do {

} v.vl.ri..le (cond)

53

Quiz: Iteration

Which of the following statements is
true?
m lterator objects have a method that yields another
element each time it is called.
m lterators are a kind of logically controlled loop.
m A while loop is an enumeration-controlled
iteration.
m A “true” iterator consists of two functions, where
the first decides how often to call the second.

54 -

1

Quiz: Iteration

Which of the following statements is
true?

m lterator objects have a method that yields another
element each time it is called.

Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection
= Iteration

s Recursion «——

55

Recursion

= Equally powerful as iteration

s Most PLs allow both recursion and
iteration

o lteration: More natural in imperative PLs
(because the loop body typically updates
variables)

7 Recursion: More natural in functional PLs
(because the recursive function typically

doesn’t update any non-local variables) .

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme
low<i<high
(define sum
(lambda (f low high)
(if (= low high)
(£ low)
(+ (£ 1low) (sum £ (+ low 1) high)))))

o7 -

1

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme

low<i<high
(define sum
(lambda (f low high) Then and else
(1£ (= low high) branches]
(£ 1low)

(+ (£ low) (sum £ (+ low 1) high)))))

o7 -

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme
low<i<high
(define sum
(lambda (f low high)
(if (= low high)

Recursive call
(£ low)

(+ (£ low) (sum £ (+ low 1) high)))))

o7 -

Tail Recursion

Recursive call is the last statement
before the function returns

m Compiled code can reuse same allocation frame

m Revised example:

(define sum
(lambda (f low high subtotal)
(if (= low high)
(+ subtotal (f low))
(sum £ (+ low 1) high (+ subtotal (f low))))))

59

E\,{MPLL . SU\WO\."'\‘O.,,

[swim L 2 4)
Na{V(fw.')\}w\ew-lx"-:ou :

S

Sww

Wk =Y

\

gr—

SwwA
f=1
|o»J"3

\'\«3\" =4 ‘

S

=
low = 2
\,.;\\,\:Lf l

‘Q“(' — < aquL VL

«g-mwacs

= \,\b,‘ € Curs Vit

coMs

42

(cowr £ 2 % O)

Tal= Ctcursive }w‘)bwcvd—.-‘—;"w N

Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection
= Iteration
s Recursion V

61

