
31

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Control Flow (Part 2)

32

Overview

■ Expression Evaluation

■ Structured and Unstructured
Control Flow

■ Selection

■ Iteration

■ Recursion

33

Selection

■ Branch that depends on a condition

■ Different syntactic variants

□ If-else statements (sometimes with else-if)

□ Case/switch statements

34

If Statements

Syntactic variants across PLs

if (A == B) then ...
else if (A == C) then ...
else ...

(cond
((= A B)
(...))

((= A C)
(...))

(T
(...))

)

if [$A = $B]
then ...
elif [$A = $C]
then ...
else ...
fi

Algol 60 and its
descendants:

Lisp and its
descendants:

Bash

39

36 - 1

Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

-- Ada syntax
case ... -- potentially complicated expression
if
when 1 => clause_A
when 2 | 7 => clause_B
when 3..5 => clause_C
when 10 => clause_D
when others => clause_E

end case;

36 - 2

Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

-- Ada syntax
case ... -- potentially complicated expression
if
when 1 => clause_A
when 2 | 7 => clause_B
when 3..5 => clause_C
when 10 => clause_D
when others => clause_E

end case;

Labels Arms

40

41

39

Variations Across PLs

■ Case/switch varies across PLs

□ What values are allowed in labels?

□ Are ranges allowed?

□ Do you need a default arm?

□ What happens if the value does not match?

40

Fall-Through Case/Switch

C/C++/Java

■ Each expression

needs its own

label (no ranges)

■ Control flow “falls

through”, unless

stopped by break

statement

switch (/* expression */) {
case 1: clause_A

break;
case 2:
case 7: clause_B

break;
case 3:
case 4:
case 5: clause_C

break;
case 10: clause_D

break;
default: clause_E

break;
}

41 - 1

Quiz: Switch/Case

What does the following C++ code print?

int x = 7;
switch (x)
{
case 8: { x -= x; }
case 7: { x += x; }
case 6: { x -= 5; }
default: { x += 1; }

}
std::cout << x;

41 - 2

Quiz: Switch/Case

What does the following C++ code print?

int x = 7;
switch (x)
{
case 8: { x -= x; }
case 7: { x += x; }
case 6: { x -= 5; }
default: { x += 1; }

}
std::cout << x;

Result: 10

Each of these is
executed (because
no break statement)

42

Overview

■ Expression Evaluation

■ Structured and Unstructured
Control Flow

■ Selection

■ Iteration

■ Recursion

43

Iteration

■ Essential language construct

□ Otherwise: Amount of work done is linear to

program size

■ Two basic forms of loops
□ Enumeration-controlled:

Once per value in finite set

□ Logically controlled:
Until Boolean expression is false

44 - 1

Enumeration-controlled Loops

■ Most simple form: Triple of
□ Initial value

□ Bound

□ Step size

do i = 1, 10, 2
...

enddo;

FOR i := 1 TO 10 BY 2 DO
...

END

Modula-2:Fortran 90:

44 - 2

Enumeration-controlled Loops

■ Most simple form: Triple of
□ Initial value

□ Bound

□ Step size

do i = 1, 10, 2
...

enddo;

FOR i := 1 TO 10 BY 2 DO
...

END

Modula-2:Fortran 90:

Iterations with i = 1, 3, 5, 7, 9

45

Semantic Variants

Different PLs offer different variants

■ Can you leave the loop in the middle?

■ Can you modify the loop variable?

■ Can you modify the values used to compute the

loop bounds?

■ Can you read the loop variable in/after the loop?

46

Iterators

■ Special enumeration-controlled loop:
Iterates through any kind of
set/sequence of values
□ E.g., nodes of a tree or elements of a collection

■ Decouples two algorithms
□ How to enumerate the values

□ How to use the values

■ Three flavors
□ “True” iterators, iterator objects, first-class

functions

47

“True” Iterators a.k.a Generators

■ Subroutine with yield statements

□ Each yield “returns” another element

■ Popular, e.g., in Python, Ruby, and C#

■ Used in a for loop

□ Example (Python):

range is a built-in iterator
for i in range(first, last, step):

...

48

Example: Binary Tree

class BinTree:
def __init__(self, data):

self.data = data
self.lchild = self.rchild = None

other methods: insert, delete, lookup, ...

def preorder(self):
if self.data is not None:

yield self.data
if self.lchild is not None:

for d in self.lchild.preorder():
yield d

if self.rchild is not None:
for d in self.rchild.preorder():

yield d

49 - 1

Iterator Objects

■ Regular object with methods for
□ Initialization

□ Generation of next value

□ Test for completion

■ Popular, e.g., in Java and C++
■ Used in for loop

for (Iterator i = c.iterator(); i.hasNext();) {
... = i.next();

}

49 - 2

Iterator Objects

■ Regular object with methods for
□ Initialization

□ Generation of next value

□ Test for completion

■ Popular, e.g., in Java and C++
■ Used in for loop

for (Iterator i = c.iterator(); i.hasNext();) {
... = i.next();

}

49 - 3

Iterator Objects

■ Regular object with methods for
□ Initialization

□ Generation of next value

□ Test for completion

■ Popular, e.g., in Java and C++
■ Used in for loop

for (Iterator i = c.iterator(); i.hasNext();) {
... = i.next();

} for (Element e : c) {
...

}
Since Java 5

50

Example: Binary Tree

class BinTree<T> implements Iterable<T> {
BinTree<T> left; BinTree<T> right; T val;

// other methods: insert, delete, lookup

public Iterator<T> iterator() {
return new TreeIterator(this);

}
private class TreeIterator implements Iterator<T> {

public boolean hasNext() {
... // check if there is another element

}
public T next() {

... // return the next element
}
public void remove() {

throw new UnsupportedOperationException();
}}}

51 - 1

Iterating with First-Class Functions

■ Two functions
□ One function about what to do for each element

□ Another function that calls the first function for

each element

■ Example (Scheme):
(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step f))
())))

51 - 2

Iterating with First-Class Functions

■ Two functions
□ One function about what to do for each element

□ Another function that calls the first function for

each element

■ Example (Scheme):
(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step f))
())))

51 - 3

Iterating with First-Class Functions

■ Two functions
□ One function about what to do for each element

□ Another function that calls the first function for

each element

■ Example (Scheme):
(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step f))
())))

Defines a function
with four arguments

51 - 4

Iterating with First-Class Functions

■ Two functions
□ One function about what to do for each element

□ Another function that calls the first function for

each element

■ Example (Scheme):
(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step f))
())))

Calls f with the next
element

51 - 5

Iterating with First-Class Functions

■ Two functions
□ One function about what to do for each element

□ Another function that calls the first function for

each element

■ Example (Scheme):
(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step f))
())))

Recursively calls
uptoby to handle the
remaining elements

52 - 1

Iterating with First-Class Functions (2)

■ Originally, proposed in functional
languages

■ Nowadays, available in many modern
PLs through libraries
□ E.g., Java

□ E.g., JavaScript

mySet.stream().filter(e -> e.someProp > 5)

myArray.filter(e => e.someProp > 5)

52 - 2

Iterating with First-Class Functions (2)

■ Originally, proposed in functional
languages

■ Nowadays, available in many modern
PLs through libraries
□ E.g., Java

□ E.g., JavaScript

mySet.stream().filter(e -> e.someProp > 5)

myArray.filter(e => e.someProp > 5)

Iterates through all elements
and returns a filtered subset

52 - 3

Iterating with First-Class Functions (2)

■ Originally, proposed in functional
languages

■ Nowadays, available in many modern
PLs through libraries
□ E.g., Java

□ E.g., JavaScript

mySet.stream().filter(e -> e.someProp > 5)

myArray.filter(e => e.someProp > 5)

Boolean function that decides
which elements to keep

53

Logically Controlled Loops

Whether to continue to iterate decided
through a Boolean expression

■ Pre-test:

■ Mid-test:

■ Post-test:

while (cond) {
...

}

do {
...

} while (cond)

for (;;) {
...
if (cond) break

}

54 - 1

Quiz: Iteration

Which of the following statements is
true?

■ Iterator objects have a method that yields another

element each time it is called.

■ Iterators are a kind of logically controlled loop.

■ A while loop is an enumeration-controlled

iteration.

■ A “true” iterator consists of two functions, where

the first decides how often to call the second.

54 - 2

Quiz: Iteration

Which of the following statements is
true?

■ Iterator objects have a method that yields another

element each time it is called.

■ Iterators are a kind of logically controlled loop.

■ A while loop is an enumeration-controlled

iteration.

■ A “true” iterator consists of two functions, where

the first decides how often to call the second.

55

Overview

■ Expression Evaluation

■ Structured and Unstructured
Control Flow

■ Selection

■ Iteration

■ Recursion

56

Recursion

■ Equally powerful as iteration

■ Most PLs allow both recursion and
iteration
□ Iteration: More natural in imperative PLs

(because the loop body typically updates

variables)

□ Recursion: More natural in functional PLs

(because the recursive function typically

doesn’t update any non-local variables)

57 - 1

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than
equivalent iterative code

■ Reason: New allocation frame for each call

■ Example: Compute
∑

low≤i≤high

f(i) in Scheme

(define sum
(lambda (f low high)
(if (= low high)
(f low)
(+ (f low) (sum f (+ low 1) high)))))

57 - 2

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than
equivalent iterative code

■ Reason: New allocation frame for each call

■ Example: Compute
∑

low≤i≤high

f(i) in Scheme

(define sum
(lambda (f low high)
(if (= low high)
(f low)
(+ (f low) (sum f (+ low 1) high)))))

Then and else
branches

57 - 3

Efficiency

Naively written or naively compiled
recursive functions: Less efficient than
equivalent iterative code

■ Reason: New allocation frame for each call

■ Example: Compute
∑

low≤i≤high

f(i) in Scheme

(define sum
(lambda (f low high)
(if (= low high)
(f low)
(+ (f low) (sum f (+ low 1) high)))))

Recursive call

59

Tail Recursion

Recursive call is the last statement
before the function returns

■ Compiled code can reuse same allocation frame

■ Revised example:

(define sum
(lambda (f low high subtotal)
(if (= low high)
(+ subtotal (f low))
(sum f (+ low 1) high (+ subtotal (f low))))))

42

61

Overview

■ Expression Evaluation

■ Structured and Unstructured
Control Flow

■ Selection

■ Iteration

■ Recursion ✔

