Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
31




Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection «=——
= Iteration

s Recursion
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Selection

= Branch that depends on a condition
= Different syntactic variants
o If-else statements (sometimes with else-if)

0 Case/switch statements
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If Statements

Syntactic variants across PLs

Algol 60 and its Lisp and its

descendants: descendants:

if (A == B) then ... (cond

else if (A == C) then ... ((= A B)

else ... (...))
((=AC)

Bash (...))

if [ $A = $B ] (T

then ... (...))

elif [ $A = $C ] )

then ...

else ...

fi
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Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

— Ada syntax
case ... — potentially complicated expression
if

when 1 => clause A

when 2 | 7 => clause B

when 3..5 = clause C

when 10 => clause D

when others => clause E
end case;
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Case/Switch Statements

Many conditions that compare the same
expression to different compile-time
constants

— Ada syntax
case ... — potentially complicated expression
if

when| 1 >|clause A

when|2 | 7 PB>|clause B

when|3..5 >|clause C

when| 10 >|clause D

when|others > |clause E
end case;

Labels Arms
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Variations Across PLs

= Case/switch varies across PLs
1 What values are allowed in labels?
0 Are ranges allowed?
o Do you need a default arm?

o What happens if the value does not match?
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Fall-Through Case/Switch

C/C++/Java

m Each expression

switch ( /* expression %/ ) {
case 1l: clause A

break;
needs its own case 2:
case 7: clause B
label (no ranges) break;
case 3:

= Control flow “falls case 4:

through”, unless case 5: clause C

break;
stopped by break case 10: clause D

break;
statement default: clause E

break;
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Quiz: Switch/Case

What does the following C++ code print?

int x = 7;

switch (x)

{
case 8: { x —= x;
case 7: { x += x;
case 6: { x—=05; }

default: { x+=1; }
}

std: :cout << x;
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Quiz: Switch/Case

What does the following C++ code print?

int x =7;
switch (x)
{

case 8: { x —= x;
case 7: { x += x; } «— Each of these is
case 6: { x == 5; } «— oyecuted (because

default: { x+=1; } =
} no break statement)

std: :cout << x;

Result: 10

41
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Overview

= Expression Evaluation

s Structured and Unstructured
Control Flow

s Selection
s lteration «——

s Recursion
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lteration

s Essential language construct

0 Otherwise: Amount of work done is linear to

program size

= Two basic forms of loops

0 Enumeration-controlled:
Once per value in finite set

o Logically controlled:
Until Boolean expression is false
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Enumeration-controlled Loops

= Most simple form: Triple of
o Initial value
o Bound

o Step size

Fortran 90: Modula-2:

doi=1, 10, 2 FOR i :=1 TO 10 BY 2 DO

enddo; END

44 -
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Enumeration-controlled Loops

= Most simple form: Triple of
o Initial value
o Bound

o Step size

Fortran 90: Modula-2:

doi=1, 10, 2 FOR i :=1 TO 10 BY 2 DO

enddo; END

Iterations withi=1,3,5,7,9
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Semantic Variants

Different PLs offer different variants

m Can you leave the loop in the middle?
m Can you modify the loop variable?

m Can you modify the values used to compute the
loop bounds?

m Can you read the loop variable in/after the loop?
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lterators

= Special enumeration-controlled loop:
Iterates through any kind of
set/sequence of values
0 E.g., nodes of a tree or elements of a collection
= Decouples two algorithms

0 How to enumerate the values
0 How to use the values

s Three flavors

o “True” iterators, iterator objects, first-class
functions
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“True’ lterators a.k.a Generators

= Subroutine with yield statements

0 Each yield “returns” another element
= Popular, e.g., in Python, Ruby, and C#
= Used ina for loop

0 Example (Python):

# range is a built—in iterator
for 1 in range(first, last, step):
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Example: Binary Tree

class BinTree:
def init (self, data):
self.data = data
self.lchild = self.rchild = None

# other methods: insert, delete, lookup,

def preorder (self) :
1f self.data is not None:
yield self.data
1f self.lchild is not None:

for d in self.lchild.preorder() :

yield d
if self.rchild is not None:

for d in self.rchild.preorder() :

yield d
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Iterator Objects

= Regular object with methods for
o Initialization
o Generation of next value
o Test for completion

= Popular, e.g., in Java and C++

= Used in for loop

for (Iterator i = c.iterator(); i.hasNext(); ) {
. = i.next();
}

49 -
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Iterator Objects

= Regular object with methods for

o Initialization

0 Test for completion
= Popular, e.g., in Java and C++

= Generation of next value

= Used in for loop

for (Iterator i =

v

c.iterator()|;

1.hasNext () ;

}

.. =[Tnext();] T

)

{
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Iterator Objects

= Regular object with methods for
o Initialization
o Generation of next value
o Test for completion

= Popular, e.g., in Java and C++

= Used in for loop

for (Iterator i = c.iterator(); i.hasNext(); ) {
. = i.next();

} \ Since Java 5 for (E1 te:oa

>

}

{

49 -



Example: Binary Tree

class BinTree<T> implements Iterable<T> {
BinTree<T> left; BinTree<T> right; T val;

// other methods: insert, delete, lookup

public Iterator<T> iterator() ({
return new Treelterator(this);
}

private class TreelIterator implements Iterator<T> {
public boolean hasNext () {
... // check if there is another element
}

public T next () {
... // return the next element
}

public void remove() {
throw new UnsupportedOperationException() ;

}}} 50



Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step f)
(Lf (<= low high)
(begin
(£ 1low)
(uptoby (+ low step) high step f))

0)))
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Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element——

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step [£]<
(if (<= low high)
(begin
(£ 1low)
(uptoby (+ low step) high step f))

())))
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Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define ob ] _
(1anbd2pt(1m% high step £)<— Defines a function

(Lf (<= low high) :
beqin with four arguments
(£ 1low)
(uptoby (+ low step) high step f))

0)))
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Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptoby
(lambda (low high step f)

(if (<= low high) Calls £ with the next
e element

(uptoby (+ low step) high step f))
))))
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Iterating with First-Class Functions

s Two functions
0 One function about what to do for each element

o Another function that calls the first function for

each element

= Example (Scheme):

(define uptaby Recursively calls

(lambda (low high step f) uptoby to handle the
(if (<= low high)

(begin remaining elements
(f low) /

(uptoby (+ low step) high step f))
))))

51
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Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream() .filter (e —> e.sameProp > 5)

o E.g., JavaScript

myArray.filter (e => e.sameProp > 5)
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Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream()I.filterfe —> e.sameProp > 5)

|
Iterates through all elements
0 E.g., JavaScript and returns a filtered subset

myArray./filter(eé => e.sameProp > 5)
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Iterating with First-Class Functions (2)

= Originally, proposed in functional
languages
= Nowadays, available in many modern

PLs through libraries
o E.g., Java
mySet.stream() .filter‘e —> e.sameProp > 5) |

|
Boolean function that decides

0 E.g., JavaScript which elements to keep

I
myArray.filter(e => e.someProp > 5)
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Logically Controlled Loops

Whether to continue to iterate decided
through a Boolean expression

m Pre-test: while (cond) {

}

m Mid-test: for (;;) {

:|.f . (cond) break
}

m Post-test: do {

} v.vl.ri..le (cond)
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Quiz: Iteration

Which of the following statements is
true?
m lterator objects have a method that yields another
element each time it is called.
m lterators are a kind of logically controlled loop.
m A while loop is an enumeration-controlled
iteration.
m A “true” iterator consists of two functions, where
the first decides how often to call the second.
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Quiz: Iteration

Which of the following statements is
true?

m lterator objects have a method that yields another
element each time it is called.
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Recursion

= Equally powerful as iteration

s Most PLs allow both recursion and
iteration

o lteration: More natural in imperative PLs
(because the loop body typically updates
variables)

7 Recursion: More natural in functional PLs
(because the recursive function typically

doesn’t update any non-local variables) .



Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme
low<i<high
(define sum
(lambda (f low high)
(if (= low high)
(£ low)
(+ (£ 1low) (sum £ (+ low 1) high)))))

o7 -
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Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme

low<i<high
(define sum
(lambda (f low high) Then and else
(1£ (= low high) branches ]
(£ 1low)

(+ (£ low) (sum £ (+ low 1) high)))))
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Efficiency

Naively written or naively compiled
recursive functions: Less efficient than

equivalent iterative code
m Reason: New allocation frame for each call

s Example: Compute > f(i) in Scheme
low<i<high
(define sum
(lambda (f low high)
(if (= low high)

Recursive call
(£ low)

(+ (£ low) (sum £ (+ low 1) high)))))
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Tail Recursion

Recursive call is the last statement
before the function returns

m Compiled code can reuse same allocation frame

m Revised example:

(define sum
(lambda (f low high subtotal)
(if (= low high)
(+ subtotal (f low))
(sum £ (+ low 1) high (+ subtotal (f low))))))
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= Iteration
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