Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

Control vs. Data Abstraction

| \

= Abstract a = Abstract how to
well-defined represent
operation information

= E.g., a subroutine _ E q. types and
or an exception classes

handler

Control vs. Data Abstraction

| \

= Abstract a = Abstract how to
well-defined represent
operation information

= E.g., a subroutine _ E q. types and
or an exception classes
handler

Focus of this lecture

Overview

= Calling Sequences «——
s Coroutines
= Promises, Async, and Await

Terminology

s Subroutine: Mechanism for control
abstraction

0 Function: Subroutine that returns a value

1 Procedure: Subroutine that doesn’t return a
value

s Parameters

0 Actual parameters = arguments: Data passed
by caller

0 Formal parameters: Data received by callee

Calling Sequences

s Low-level code executed to maintain
call stack

0 Before subroutine call in caller
1 At beginning of subroutine in callee (“prologue”)
1 At end of subroutine in callee (“epilogue”)

1 After subroutine call in caller

Why Does It Matter?

= Important to
o Understand performance implications

o Understand security implications, e.g., stack
smashing attacks

1 Choose/design/implement compilers

Reminder: Stack Layout

= Each procedure call:
One stack frame (or activation record)

= Frame pointer: Base address used to
access data in current stack frame

= Stack pointer: First unused (or,
sometimes, last used) location Iin
current stack frame

SHo
ctack
¢ it —>

Vo wob S
te .

‘-R-c MOWS ;'L*Cfl‘

\\ g frawe (coMer)

Direek o »qf
j&OW’H"

(fovard to (owe -
add teses)

Tasks to Perform

= Pass parameters and return value(s)
= Update program counter

= Save return address

= Save and restore registers

s Update stack and frame pointers

- 1

Tasks to Perform

= Pass parameters and return value(s)
= Update program counter

= Save return address

= Save and restore registers

s Update stack and frame pointers

Program counter: Address of
code to execute next

Tasks to Perform

= Pass parameters and return value(s)
= Update program counter

= Save return address

= Save and restore registers

s Update stack and frame pointers

Otherwise, don’t know what code
location to return back to

Tasks to Perform

= Pass parameters and return value(s)
= Update program counter

= Save return address

= Save and restore registers

s Update stack and frame pointers

Registers: Very fast but limited
intermediate memory

Tasks to Perform

s Pass parameters and return value(s)
= Update program counter

s Save return address

= Save and restore registers

s Update stack and frame pointers

Where to perform those?

m Possibly either in caller or in callee

m Preferably in callee: Requires space only once
per subroutine, not at each call site

Typical Calling Sequence (1/4)

= Steps performed by caller before the
call

0 Save registers whose values may be needed
after the call

0o Compute values of arguments and move them
into stack or registers

0 Pass return address and jump to subroutine

10

89

S*'H\d,_ bo(‘m C,,\M

’ (oI %a\mt

(rllar frawe

Typical Calling Sequence (2/4)

= Steps performed by callee in prologue

0 Allocate a frame: Subtract an appropriate
constant from the stack pointer

0 Save old frame pointer on stack and update it
to point to newly allocated frame

0 Save registers that may be overwritten by
current subroutine

12

SHoacle &k\%r ff@\os\,\c

Qladh

N

(ﬂ L’WX o\ ' u

SonO TN sxees

e e /\—///—/,

&W)((f . ga\V‘A (G;awt, rbim’k(
VP N Ll
(5% Le \ \2{7{1&(\ miw

CoNan ,"..o.w.e

(oM ¢ (swe

Quiz: Stack Frames

Assume the frame pointer is stored Iin
register ebp, addresses are 8 bytes long,
and all arguments are 32-bit integers.

What is the address the callee uses to
access the third argument?

14 -

1

d w T

\
Codhar &-“w‘e
Ghech |
?q“m‘k' 7 — 8 ")«5
(fﬂ UWX 50«@&& %Slg\"% S
@ | e d e o 5/ o
e) ‘ﬁm mddeess }> bigrs
B I Lb%s
— NS
D (oM ¢ (‘we
A‘t) 2
A“) 3 €),

91

(«R;\)r

addrcsses

LL‘) +3+ 8+ (Z"i'\ = eBp"‘lL" bf)*“

Quiz: Stack Frames

Assume the frame pointer is stored Iin
register ebp, addresses are 8 bytes long,
and all arguments are 32-bit integers.

What is the address the callee uses to
access the third argument?

Answer: ebp + 24 bytes

14 -

Typical Calling Sequence (3/4)

= Steps performed by callee in epilogue

o Move return value into register or reserved
location in stack

0 Restore registers (to state before call)

o Restore frame pointer and stack pointer

o Jump back to return address

15

gr‘\'ﬁ (‘/((-/ p?ﬁ-er Qf\ (D\ﬁx\/\ﬁ
/ f\(a/\
| — AYD .
LOLO*X \/ar\’wb\tg
_}aqLo\ «'%S\‘(
Savec &(amc fe%vvl'tr
%ci —v)L, Rt eddess
A
A(S 1)
rro\mt&(r ”\65 Z

CU/({(&aw\(,

Typical Calling Sequence (4/4)

= Steps performed by caller after the call
0 Move return value to where it Is needed

0 Restore registers (to state before call)

17

Application: Stack Smashing

= Special kind of buffer overflow
vulnerability

o Lack of bounds checking: May write beyond
space allocated for a local variable

o Malicious input can overwrite return address

0 Program can jump into malicious code

18

Example: Stack Smashing

int read nb from file(FILE xs) {
char buf[100];
char *p = buf;
do {
/* read from stream s */

*p = getc(s);

} while (*pt++ !'= '\n’);
*p = "\0’;
return atoi (buf) ;

}

19

vauu\v'vé/

-

i glne =
Aﬂ&d reste S

93

Overview

= Calling Sequences
s Coroutines «——
= Promises, Async, and Await

21

Coroutines

= Control abstraction that allows for
0 suspending execution
0 resuming where it was suspended

= For implementing non-preemptive
multi-tasking

22

Example: Fibers In

Ruby

fiberl = Fiber.new do
puts "Fiber 1"
Fiber.yield
puts "Fiber 1 again"
end

fiber2 = Fiber.new do
puts "Fiber 2"
Fiber.yield
puts "Fiber 2 again"
end

fiberl.resume
fiber2.resume
fiber2.resume
fiberl.resume

23 -

1

Example: Fibers in Ruby

/

fiberl = Fiber.new do
puts "Fiber 1"
Fiber.yield
puts "Fiber 1 again"

N

end

fiber2 = Fiber.new 50/
puts "Fiber 2"
Fiber.yield
puts "Fiber 2 again"

end

fiberl.resume
fiber2.resume
fiber2.resume
fiberl.resume

Creates a
coroutine
(“fiber”)

23 -

Example: Fibers in Ruby

fiberl = Fiber.new do
puts "Fiber 1"
Fiber.yield
puts "Fiber 1 again"
end

fiber2 = Fiber.new do
puts "Fiber 2"
Fiber.yield
puts "Fiber 2 again"
end

Continues to run a

fiberl.resumne =

fiber2.resume - coroutine from
fiber2.resume =]
fiberl.resume < where it last stopped . .

Example: Fibers in Ruby

fiberl = Fiber.new do
puts "Fiber 1"

Fiber.yield =
puts "Fiber 1 again"
end

fiber2 = Fiber.new do
puts "Fiber 2"

Fiber.yield
puts "Fiber 2 again"
end

fiberl.resume
fiber2.resume
fiber2.resume
fiberl.resume

Passes control
back to where the
coroutine was
resumed

23 -

Example: Fibers in Ruby

fiberl = Fiber.new do
puts "Fiber 1"
Fiber.yield
puts "Fiber 1 again"
end

fiber2 = Fiber.new do
puts "Fiber 2"
Fiber.yield
puts "Fiber 2 again"
end

fiberl.resume
fiber2.resume
fiber2.resume
fiberl.resume

Prints:
Fiber 1
Fiber 2
Fiber 2 again
Fiber 1 again

23 -

Coroutines vs

. Threads

/

s Explicit transfer
of control (non-
preemptive)

= Only one
coroutines runs
at a time

\

= Control flow
transfered
implicitly and
preemptively

= Multiple threads

may run
concurrently

24

Coroutines vs. Continuations

/ \

= Changes every time it = Once created, doesn’t

runs change

= Old program counter = When invoking, old
saved when transfering program counter is
to another coroutines lost

= When transfering back, = Multiple jumps to same
continue where we left continuation always
off start at same position

25 -1

Coroutines vs. Continuations

/ \

= Changes every time it = Once created, doesn’t

runs change

= Old program counter = When invoking, old
saved when transfering program counter is
to another coroutines lost

= When transfering back, = Multiple jumps to same
continue where we left continuation always
off start at same position

Both: Represented by a closure
(= code address + referencing environment)

Stack Allocation

= Coroutines may call subroutines and
create other coroutines

s Each coroutine has its own function
stack

0 Second stack created when a routine creates a
coroutine

= Repeated creation of coroutines:
“Cactus stack™

26

Cp\ c;'&v\S

Hack

—~—

94

1R

Coroutines in Popular PLs

= Natively supported, e.g., in Ruby and
Go

= Available as libraries, e.g., for Java,
C#, JavaScript, Kotlin

= Specialized variants, e.g., in Python
(generators)

28

Overview

= Calling Sequences
s Coroutines
= Promises, Async, and Await «——

Following slides partially adapted from Frank Tip

29

Motivation for Asynchrony

= Parts of a program may take very long
o File I/0
0 Network 1/0
0 Waliting for user input

= Continue with rest of program until
long-running parts are finished

30

Expressing Asynchrony

= Event-driven programming

1 Register callbacks to invoke once finished
= Promises (aka futures)

1 Object to represent a not yet computed value
s Async and await

0 Syntactic sugar to ease programming with

promises

31

Event-Driven Programming

Minimal example (JavaScript):

longRunning(someArqg, (err, result) => {
1if (err == null)
// handle error
else

// use result

})

32

Example: Sum of File Sizes

V-

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir(path, (err, fileNames) => ({

Goal: Compute total size of all files
in given directory

});

33 -

1

Example: Sum of File Sizes

V-

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir(path, (err, fileNames) => ({

Goal: Compute total size of all files
in given directory

Read files in directory and invoke
callback once done

});

33 -

Example: Sum of File Sizes

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir(path, (err, fileNames) => ({
if (err === null) {

\

Handle possible errors during file I/0

} else v
console.log("I/O error: " + err);

});
}

33 -

Example: Sum of File Sizes

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir(path, (err, fileNames) => ({
if (err === null) {
for (let fileName of fileNames) {
fs.stat (fileName, (err, fileInfo) => ({

});

}

} else
console.log("I/O error: " + err);

});
}

Get file information (incl. size) for each
file in the directory

33 -

Example: Sum of File Sizes

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir(path, (err, fileNames) => ({
if (err === null) {
for (let fileName of fileNames) {
fs.stat (fileName, (err, fileInfo) => ({
if (err === null) {

N
s

console.log("I/O error: " + err);

});
}

} else
console.log("I/O error: " + err);

});
}

Error handling again

33 -

Example: Sum of File Sizes

function computeSum(path) {
let sum = 0; let count = O;
fs.readdir (path, (err, fileNames) => {
i1f (err === null) {
for (let fileName of fileNames) {
fs.stat (fileName, (err, fileInfo) => ({
if (err === null) {
sum += fileInfo.size;
count++;
if (count == fileNames.length) {
console.log(sum) ;
}
} else
console.log("I/O error: " + err);

Synchronization: Ensure to write sum once

callbacks for all files invoked

});
}

33 -

Problems

= Deeply nested control flow:
“Callback hell”

= Error-handling scattered throughout
code

= Need explicit synchronization when
depending on multiple asynchronous
computations

34

Promises

= Object that represents result of
asynchronous computation

= Always in one of three states
0 Pending

0 Rejected

= Once settled, state doesn’t changed
anymore

35

Minimal Example

// 1) Create a promise
let p = new Promise((resolve, reject) => {

if (...) f
resolve (sameValue) ;
else

reject (sameError) ;
}); |
Functions to call for

resolving/rejecting the promise

36 -

1

Minimal Example

// 1) Create a promise
let p = new Promise((resolve, reject) => ({
if (...)
resolve (sameValue) ;

else

reject (someError) ; . .
Ject) Register reaction

});
invoked when promise

// 2)Mse the promise _

p.then((x) = { is resolved/rejected
// use resulting value

}) .catch((e) => {

36 -

Example: Sum of File Sizes

function computeSum(path) {
fs.readdir (path) .then((fileNames) => {

N

Now using the promise
version of £s APIs, which
return promises

37 -

1

Example: Sum of File Sizes

function computeSum(path) {
fs.readdir (path) .then((fileNames) => {
const promises = fileNames.map((fn) => fs.stat(fn));
// wait for all of them to be resolved
return Pramise.all (promises) ; T

})
T Each call returns a promise

Returns a single promise
once all given promises
are resolved

37 -

Example: Sum of File Sizes

function computeSum(path) {
fs.readdir (path) .then((fileNames) => {
const promises = fileNames.map((fn) => fs.stat(fn));
// wait for all of them to be resolved
return Pramise.all (promises) ;
}) .then((fileInfos) => ({

‘\ Chain multiple promises:
Reactions registered with then

H are executed sequentially

37 -

Example: Sum of File Sizes

function computeSum(path) {

fs.readdir (path) .then((fileNames) => {
const promises = fileNames.map((fn) => fs.stat(fn));
// wait for all of them to be resolved
return Pramise.all (promises) ;

}) .then((fileInfos) => ({
// compute sum
const sum = fileInfos.reduce((acc, val) =

{ return acec + val.size; }, 0);

console.log(sum) ;

})

37 -

Example: Sum of File Sizes

function computeSum(path) {

fs.readdir (path) .then((fileNames) => {
const promises = fileNames.map((fn) => fs.stat(fn));
// wait for all of them to be resolved
return Pramise.all (promises) ;

}) .then((fileInfos) => ({
// compute sum
const sum = fileInfos.reduce((acc, val) =>

{ return acec + val.size; }, 0);

console.log(sum) ;

}) .catch((e) => {
console.log("error: " + e);

});
AL

Handles errors in any previous
promises in the chain

37 -

Pros and Cons

= Benefits over event-driven code
o Control flow now easier to understand
0 Explicit synchronization using Promise.all
o All error handling in one place

= Still suboptimal:

0 Somewhat verbose syntax due to higher-order

functions

38

Async and Await

= Label function as async if it performs
asynchronous computation

0 Returns a promise
o May await other asynchronous computations

o No need for higher-order then and catch
functions

o Error handling using standard t ry and catch

39

Minimal Example

async function longRunning() {
return someValue;

}
\ Returns a promise

// in some other async function:
let result = await longRunning() ;

T

Waits for the promise to resolve

40

Example: Sum of File Sizes

async function computeSum(path) {

const fileNames = await fs.readdir (path); «—
const promises = fileNames.map((fn) => fs.stat(fn));
const fileInfos = await Promise.all (promises) ;
const sum = fileInfos.reduce((acc, val) =

{ return acec + val.size; }, 0);
console.log(sum) ;

) Looks like sequential control flow,
but execution isn’t blocked on
await expression

41 -

Example: Sum of File Sizes

async function computeSum(path) {

try {
const fileNames = await fs.readdir (path);
const promises = fileNames.map((fn) => fs.stat(fn));
const fileInfos = await Promise.all (promises) ;
const sum = fileInfos.reduce((acc, val) =

{ return acec + val.size; }, 0);

console.log(sum) ;

} catch(e) {
console.log("error: " + e);

}
| ‘K
Error handling via standard
try and catch

41

-2

Quiz: Promises, Async, and Await

Which of the following statements is
true?

m The value represented by a promise will exists
eventually.

m [he semantics of async and await can be

explained in terms of promises.
m All await expressions are evaluated in parallel.

m Chained promises are executed concurrently.

42 -

1

Quiz: Promises, Async, and Await

Which of the following statements is
true?

T | 1 . 1L ox
-eventually,

m [he semantics of async and await can be
explained in terms of promises.

n Al awett-expressionsare-evaluatedinparallek
m -Chained-promises-are-executed-concurrently—

42 -

Overview

= Calling Sequences
s Coroutines
» Promises, Async, and Await V

43

