
38

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Concurrency (Part 2)



39 - 1

Quiz: Java Concurrency

What does this Java code print?
class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}



39 - 2

Quiz: Java Concurrency

What does this Java code print?
class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}

raiseFlag:
executed in
concurrent
thread



39 - 3

Quiz: Java Concurrency

What does this Java code print?
class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}

Shared variable
accessed by
two threads



39 - 4

Quiz: Java Concurrency

What does this Java code print?
class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}

Problem: No
synchronization.
Hence, main
thread may read
old value



39 - 5

Quiz: Java Concurrency

What does this Java code print?
class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}

Code may hang forever,
print true, or print false!



40

Overview

■ Introduction

■ Concurrent Programming
Fundamentals

■ Implementing Synchronization

■ Language-level Constructs



41

Synchronization

■ Two high-level goals

□ Make some operation atomic: Multiple

instructions of a thread appear to other threads

as always executing together

• Mutually exclusive locks: Ensure that only one

thread enters a critical section at a time

□ Condition synchronization: Delay some

operation until some precondition holds



42

Synchronization vs. Parallelism

■ Inherent trade-off in concurrent
software

□ Synchronization is needed to ensure

correctness of computation

□ Synchronization reduces the amount of

possible parallelism



43

Busy-Wait Synchronization

■ Spin locks

□ Provide mutual exclusion

■ Barriers

□ No thread continues until all threads have

reached a specific point



44

Spin Lock

■ Goal: Ensure mutual exclusion

■ In principle: Can implement with only
load and store operations

□ But: Super-linear time and space requirements

■ In practice: Implemented using
special hardware instructions

□ Read, modify, and write a memory location as

one atomic step



45 - 1

Test-and-Set

■ Instruction that

□ sets a boolean variable to true and

□ returns whether it was false before

■ Spin-lock implementation:

// Pseudo code
while not test_and_set(L)
// nothing (spin)



45 - 2

Test-and-Set

■ Instruction that

□ sets a boolean variable to true and

□ returns whether it was false before

■ Spin-lock implementation:

// Pseudo code
while not test_and_set(L)
// nothing (spin)

Problem: Repeated writes when lock is already
acquired harms performance (“contention”)



102



47 - 1

Test and Test-and-Set

■ Avoid contention caused by repeated
writes

■ Spin-lock implementation:
// Pseudo code
boolean L = false

procedure acquire_lock(L)
while not test_and_set(L)
while L
// nothing (spin)

procedure release_lock(L)
L = false



47 - 2

Test and Test-and-Set

■ Avoid contention caused by repeated
writes

■ Spin-lock implementation:
// Pseudo code
boolean L = false

procedure acquire_lock(L)
while not test_and_set(L)
while L
// nothing (spin)

procedure release_lock(L)
L = false

When another
threads holds the
lock, reads
repeatedly (which
is fast due to
caching)



48

Barrier

■ Goal: Ensure that all threads finish
one phase before entering the next

■ Implementation based on atomic
fetch-and-decrement
□ Shared counter initialized to n

• n .. number of threads

□ Decrement when a thread reaches the barrier

□ Last to arrive flips a shared boolean, which all

others are waiting for



49 - 1

Barrier: Pseudo Code

integer n = // nb of threads
boolean sense = true
local_sense = true // thread-local variable

procedure barrier()
local_sense = not local_sense
if fetch_and_decrement(count) == 1
count = n
sense = local_sense

else
repeat
// spin

until sense == local_sense



49 - 2

Barrier: Pseudo Code

integer n = // nb of threads
boolean sense = true
local_sense = true // thread-local variable

procedure barrier()
local_sense = not local_sense
if fetch_and_decrement(count) == 1
count = n
sense = local_sense

else
repeat
// spin

until sense == local_sense

Shared flag to
indicate whether all
threads can proceed



49 - 3

Barrier: Pseudo Code

integer n = // nb of threads
boolean sense = true
local_sense = true // thread-local variable

procedure barrier()
local_sense = not local_sense
if fetch_and_decrement(count) == 1
count = n
sense = local_sense

else
repeat
// spin

until sense == local_sense

Local and global flag
are the same means all
threads can proceed



49 - 4

Barrier: Pseudo Code

integer n = // nb of threads
boolean sense = true
local_sense = true // thread-local variable

procedure barrier()
local_sense = not local_sense
if fetch_and_decrement(count) == 1
count = n
sense = local_sense

else
repeat
// spin

until sense == local_sense

Reinitialize for
next iteration



49 - 5

Barrier: Pseudo Code

integer n = // nb of threads
boolean sense = true
local_sense = true // thread-local variable

procedure barrier()
local_sense = not local_sense
if fetch_and_decrement(count) == 1
count = n
sense = local_sense

else
repeat
// spin

until sense == local_sense

Allow other threads
to proceed



50 - 1

Quiz: Barriers in Java

class Barrier {
static CyclicBarrier barrier;
static class Worker implements Runnable {

public void run() {
try {

System.out.println("a");
barrier.await();
System.out.println("b");
System.out.println("c");
barrier.await();

} catch (Exception e) { return; }
}

}
public static void main(String[] args) {

barrier = new CyclicBarrier(3);
for (int i = 0; i < 3; i++) {

new Thread(new Worker()).start();
}

}
}

What outputs may be produced by this code?



50 - 2

Quiz: Barriers in Java

class Barrier {
static CyclicBarrier barrier;
static class Worker implements Runnable {

public void run() {
try {

System.out.println("a");
barrier.await();
System.out.println("b");
System.out.println("c");
barrier.await();

} catch (Exception e) { return; }
}

}
public static void main(String[] args) {

barrier = new CyclicBarrier(3);
for (int i = 0; i < 3; i++) {

new Thread(new Worker()).start();
}

}
}

What outputs may be produced by this code?

Subset of
possible
outputs:
aaabbbccc,
aaabcbcbc,
aaabbccbc



51

Memory Consistency

■ When multiple locations are written
concurrently, when do the writes
become visible to other threads?

■ Most programmers expect sequential
consistency

• Each thread’s instructions execute

in the specified order

• Shared memory behaves like a global array:

Reads and writes are done immediately



53

Relaxed Memory Models

■ In practice: Some reads and writes
may occur “out of order”
□ Ensuring sequential consistency: Inefficient

□ Instead, hardware and compilers reorder and

delay some instructions

□ E.g., store into location that is not in CPU cache

• Takes hundreds of cycles to complete

• Processor completes it “in the background”

• Loads on same core see it via write buffer



103



55

Memory Models of PLs

■ Different hardware: Different
reordering behavior

■ PLs want to provide the same
guarantees everywhere

■ PLs defines their own memory model
□ E.g., Java memory model or C11 memory

model

□ PL implementation: Add fences, i.e.,

instructions to synchronize memory accesses



56

Java Memory Model

■ By default, writes to shared objects
are not immediately visible to other
threads

□ Other thread may read any old value

■ Enforce visibility by explicit
synchronization

□ Mark fields as volatile

□ Order write and read via synchronized block



57

Example (Again)

class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
} Code may hang forever,

print true, or print false!



58

Overview

■ Introduction

■ Concurrent Programming
Fundamentals

■ Implementing Synchronization

■ Language-level Constructs



59

Synchronization Constructs in PLs

■ Various PL constructs to synchronize
concurrent threads

□ Monitors

□ Conditional critical regions

□ Synchronization in Java

□ Transactional memory

□ Implicit synchronization



60

Monitors

■ Object with operations, internal state,
and condition variables

□ Only one operation is active at any given time

□ Calls to a busy monitor:

Delayed until monitor free

□ Operations may wait on a condition variable

□ Operations may signal a condition variable to

allow others to resume



61

Example: Bounded Buffer
monitor bounded_buf
buf : array [1..SIZE] of bdata
next_full, next_empty : integer := 1, 1
full_slots : integer := 0
full_slot, empty_slot : condition

fun insert(d : bdata)
if full_slots = SIZE
wait(empty_slot)

buf[next_empty] := d
next_empty := next_empty mod SIZE + 1
full_slots +:= 1
signal(full_slot)

fun remove() : bdata
if full_slots = 0
wait(full_slot)

d : bdata := buf[next_full]
next_full := next_full mod SIZE + 1
full_slots -:= 1
signal(empty_slot)
return d



62

Conditional Critical Regions

■ Syntactically delimited critical section

□ Permitted to access a protected variable

□ Condition that must be true before entering the

region

■ Syntax (pseudo code):

region protected_var when condition do
// ...

end region



63

Synchronization in Java

■ Every object can serve as a mutual
exclusion lock

■ synchronized keyword to acquire
and release locks

□ synchronized blocks: Define a critical

section

□ synchronized methods: Entire method is a

critical section



64

Demo

■ Synchronized.java



65 - 1

Synchronization in Java (2)

■ Code in a critical section can

□ ... wait for another thread:

□ ... signal another thread that it can proceeed:

while (!someCondition) {
wait();

}

notify();



65 - 2

Synchronization in Java (2)

■ Code in a critical section can

□ ... wait for another thread:

□ ... signal another thread that it can proceeed:

while (!someCondition) {
wait();

}

notify();

Releases the
lock and waits



65 - 3

Synchronization in Java (2)

■ Code in a critical section can

□ ... wait for another thread:

□ ... signal another thread that it can proceeed:

while (!someCondition) {
wait();

}

notify();

Wakes up one of the threads that wait in a
critical section with the same lock as that
hold by the current thread



65 - 4

Synchronization in Java (2)

■ Code in a critical section can

□ ... wait for another thread:

□ ... signal another thread that it can proceeed:

while (!someCondition) {
wait();

}

notify();

While loop needed: Threads may also be woken
up for spurious reasons or after a delay



66

Synchronization in Java (3)

■ Java memory model: Each Java thread
may buffer or reorder its writes until

□ ... it writes a volatile variable,

□ ... it releases a lock (e.g., leaves a

synchronized block or waits)

■ Must use some synchronization to
ensure threads writes become visible



67 - 1

Example

class Warmup {
static boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
} Code may hang forever,

print true, or print false!



67 - 2

Example

class Warmup {
static volatile boolean flag = true;
static void raiseFlag() {
flag = false;

}
public static void main(String[] args)

throws Exception {
ForkJoinPool.commonPool()
.execute(Warmup::raiseFlag);

while (flag) {};
System.out.println(flag);

}
}

Fix: Make field volatile

Code will always print false



68

Transactional Memory

■ Atomicity without locks

■ PL implementation will

□ ... speculatively execute the code block

□ ... check for conflicts, i.e., concurrent accesses

to shared data

□ ... commit the results if no conflict

□ ... roll back (and try again later) otherwise

atomic {
// critical section

}



69

Implicit Synchronization

■ Compiler determines dependencies
between concurrently executed code
fragments

□ Automatically add synchronization whenever

needed

□ Parallelize independent code fragments

■ Extremely difficult in practice

□ Auto-parallelization remains an open challenge



70 - 1

Quiz: Concurrency

Which of the following is true?

■ PLs with a memory models are sequentially

consistent.

■ A relaxed memory model allows writes to be

re-ordered.

■ Test-and-set is used to implement spin locks.

■ Client code of a monitor must use barriers to

ensure correctness.



70 - 2

Quiz: Concurrency

Which of the following is true?

■ PLs with a memory models are sequentially

consistent.

■ A relaxed memory model allows writes to be

re-ordered.

■ Test-and-set is used to implement spin locks.

■ Client code of a monitor must use barriers to

ensure correctness.



71

Overview

■ Introduction

■ Concurrent Programming
Fundamentals

■ Implementing Synchronization

■ Language-level Constructs ✔


