
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Concurrency (Part 1)

2

Overview

■ Introduction

■ Concurrent Programming
Fundamentals

■ Implementing Synchronization

■ Language-level Constructs

3

Motivation

Why do we care about concurrency?

■ To capture the logical structure of a problem

□ Inheritently concurrent problems, e.g., server

handling multiple requests

■ To exploit parallel hardware for speed

□ Since around 2005: Multi-core processors are the

norm

■ To cope with physical distribution

□ Local or global groups of interacting machines

4

Terminology

■ Concurrent
□ Two or more running tasks whose execution

may be at some unpredictable point

■ Parallel
□ Two or more tasks are actively executing at the

same time

□ Requires multiple processor cores

■ Distributed
□ Physically separated processors

5 - 1

Levels of Parallelism

■ Signals propagating through circuits
and gates

■ Instruction-level parallelism
□ E.g., load from memory while another

instruction executes

■ Vector parallelism
□ E.g., GPUs execute a single instruction on a

vector of data

■ Thread-level parallelism

5 - 2

Levels of Parallelism

■ Signals propagating through circuits
and gates

■ Instruction-level parallelism
□ E.g., load from memory while another

instruction executes

■ Vector parallelism
□ E.g., GPUs execute a single instruction on a

vector of data

■ Thread-level parallelism

Handled implicitly
by hardware

5 - 3

Levels of Parallelism

■ Signals propagating through circuits
and gates

■ Instruction-level parallelism
□ E.g., load from memory while another

instruction executes

■ Vector parallelism
□ E.g., GPUs execute a single instruction on a

vector of data

■ Thread-level parallelism

Specified by
programmer in PL

6 - 1

Example: Independent Tasks

// Task Parallel Library in C#
Parallel.For(0, 100, i => {
A[i] = foo(A[i]);

});

6 - 2

Example: Independent Tasks

// Task Parallel Library in C#
Parallel.For(0, 100, i => {
A[i] = foo(A[i]);

});

Array of
data

Function that updates each
element independently

6 - 3

Example: Independent Tasks

// Task Parallel Library in C#
Parallel.For(0, 100, i => {
A[i] = foo(A[i]);

});

Array of
data

Function that updates each
element independently

■ No need to synchronize tasks

■ Uses as many cores as possible (up to 100)

7 - 1

Example: Dependent Tasks

// As before, but foo now is:
int zero_count;
public static int foo(int n) {
int rtn = n - 1;
if (rtn == 0) zero_count++;
return rtn;

}

7 - 2

Example: Dependent Tasks

// As before, but foo now is:
int zero_count;
public static int foo(int n) {
int rtn = n - 1;
if (rtn == 0) zero_count++;
return rtn;

}

Count how many zeros
written to the array

99

9

Data Races

■ Definition of data race

□ Two accesses to the same shared memory

location

□ At least one access is a write

□ Ordering of accesses is non-deterministic

10 - 1

Another Example

// code to transfer money between accounts
// written in a toy language
fun transfer(amount, account_from, account_to) {
if (account_from.balance < amount) return NOPE;
atomic {
account_to.balance += amount;
account_from.balance -= amount;

}
return YEP;

}

10 - 2

Another Example

// code to transfer money between accounts
// written in a toy language
fun transfer(amount, account_from, account_to) {
if (account_from.balance < amount) return NOPE;
atomic {
account_to.balance += amount;
account_from.balance -= amount;

}
return YEP;

}

Ensures that code
block is executed
atomically, i.e., no other
thread executes it at
the same time

10 - 3

Another Example

// code to transfer money between accounts
// written in a toy language
fun transfer(amount, account_from, account_to) {
if (account_from.balance < amount) return NOPE;
atomic {
account_to.balance += amount;
account_from.balance -= amount;

}
return YEP;

}

Ensures that code
block is executed
atomically, i.e., no other
thread executes it at
the same time

Quiz: Could a program invoking transfer

multiple times concurrently have a data race?

10 - 4

Another Example

// code to transfer money between accounts
// written in a toy language
fun transfer(amount, account_from, account_to) {
if (account_from.balance < amount) return NOPE;
atomic {
account_to.balance += amount;
account_from.balance -= amount;

}
return YEP;

}

Yes, there still is a data race:
Concurrent and unsynchronized read
and write of account from.balance

11

Overview

■ Introduction

■ Concurrent Programming
Fundamentals

■ Implementing Synchronization

■ Language-level Constructs

12 - 1

Processes, Threads, Tasks

■ Process: Operating system construct
that may execute threads

■ Thread: Active entity that the
programmer thinks of as running
concurrently with other threads

■ Task: Unit of work that must be
performed by some thread

12 - 2

Processes, Threads, Tasks

■ Process: Operating system construct
that may execute threads

■ Thread: Active entity that the
programmer thinks of as running
concurrently with other threads

■ Task: Unit of work that must be
performed by some thread

OS level

PL
level

Logical
level

12 - 3

Processes, Threads, Tasks

■ Process: Operating system construct
that may execute threads

■ Thread: Active entity that the
programmer thinks of as running
concurrently with other threads

■ Task: Unit of work that must be
performed by some thread

■ Terminology differs across PLs and systems

■ More general than, e.g., Java’s “threads”

13

Communication

■ Constructs to pass information
between threads
□ Shared memory: Some variables accessible by

multiple threads

□ Message passing: No shared state, but threads
send messages to each other

□ Some PLs provide both

14

Synchronization

■ Mechanisms to control relative order
of operations in different threads

■ Explicit in shared-memory model

□ Must synchronize to ensure that variable read

sees newest value stored in the variable

■ Implicit in message-passing model
□ Sender receives message after

it has been sent

15

Spinning vs. Blocking

■ Two forms of synchronization

■ Spinning (also: busy-waiting)

□ Thread re-evaluates some condition until it

becomes true (because of some other thread)

■ Blocking

□ Waiting threads stops computation until some

condition becomes true

□ Scheduler reactives the thread

16

Examples

Shared
memory

Message
passing

Distributed
computing

Language Java, C#,
C/C++

Go Erlang

Extension OpenMP Remote pro-
cedure call

Library pthreads,
Windows
threads

MPI Internet
libraries

17 - 1

Quiz: Terminology

Which of the following sentences are true?

■ Concurrency means two or more tasks are
actively executing at the same time.

■ A data race can occur even if only one thread
writes to a shared variable.

■ Vector parallelism should be avoided to ensure
correctness.

■ In PLs with message passing, synchronization is
implicit via receiving messages.

17 - 2

Quiz: Terminology

Which of the following sentences are true?

■ Concurrency means two or more tasks are
actively executing at the same time.

■ A data race can occur even if only one thread
writes to a shared variable.

■ Vector parallelism should be avoided to ensure
correctness.

■ In PLs with message passing, synchronization is
implicit via receiving messages.

18

Thread Creation Syntax

■ How to create a thread of execution?

■ Four answers in popular PLs

□ Co-begin

□ Parallel loops

□ Launch-at-elaboration

□ Fork (with optional join)

19

Co-begin

■ Compound statement where all
statements are executed concurrently

■ Example (pseudo-code):

co-begin
stmt_1
stmt_2
...
stmt_n

end

20 - 1

Example: C with OpenMP

#pragma omp sections
{
pragma omp section

{ printf("thread 1 here\n"); }

pragma omp section
{ printf("thread 2 here\n"); }

}

20 - 2

Example: C with OpenMP

#pragma omp sections
{
pragma omp section

{ printf("thread 1 here\n"); }

pragma omp section
{ printf("thread 2 here\n"); }

}

Pragmas: Compiler directives
(# sign must be in first column)

21

Parallel Loops

■ Loop whose iterations execute
concurrently instead of sequentially

■ Ex. 1: C with OpenMP

■ Ex. 2: C# with Task Parallel Library

#pragma omp parallel for
for (int i = 0; i < 3; i++) {
printf("thread %d here\n", i);

}

Parallel.For(0, 3, i => {
Console.WriteLine("Thread " + i + " here");

});

22

Synchronization in Parallel Loops

■ What about data races in parallel
loops?

■ Most PLs: Developer’s responsibility

■ Some PLs: Implicit synchronization
□ E.g., forall loops in Fortran 95:

Synchronization on every assignment

• All reads on right-hand side are before writes on

the left-hand side

23 - 1

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

23 - 2

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

Reads and writes
of array elements

23 - 3

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

Reads and writes
of array elements

Assignments: Implicit
synchronization points

23 - 4

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

At first, all threads
read from B and C

23 - 5

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

At first, all threads
read from B and C

Then, all writes to
A(i) happen

23 - 6

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

At first, all threads
read from B and C

Then, all writes to
A(i) happen

Next, all threads read
the just written
values from A

23 - 7

Example: Fortran 95

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

At first, all threads
read from B and C

Then, all writes to
A(i) happen

Next, all threads read
the just written
values from A

Finally, the threads
write updated
values to A(i+1)

24

Quiz: Parallel Loops

What is the value of A after executing the loop
with these initial values:

■ A is [1, 1, 1]

■ B is [1, 2, 3]

■ C is [3, 2, 4]

■ n is 3
(Note: Arrays indices start at 1 in Fortran)

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

100

26

Data Sharing in Parallel Loops

■ Some PLs: Can specify which
variables are shared among threads

■ E.g., OpenMP

□ Shared data: All threads access same data

□ Private data: Each thread has its own copy

□ Reduction: Reduce a private variable across all

threads at end of loop

27 - 1

Example: C with OpenMP

double A[N];
double sum = 0;

#pragma omp parallel for \
default(shared) reduction(+:sum)

for (int i = 0; i < N; i++) {
sum += A[i];

}
printf("sum: %f\n", sum);

27 - 2

Example: C with OpenMP

double A[N];
double sum = 0;

#pragma omp parallel for \
default(shared) reduction(+:sum)

for (int i = 0; i < N; i++) {
sum += A[i];

}
printf("sum: %f\n", sum);

All variables (except for i)
are shared by default

27 - 3

Example: C with OpenMP

double A[N];
double sum = 0;

#pragma omp parallel for \
default(shared) reduction(+:sum)

for (int i = 0; i < N; i++) {
sum += A[i];

}
printf("sum: %f\n", sum);

All variables (except for i)
are shared by default

Exception from default:

■ Each thread has private
copy of sum initialized
before entering loop

■ At end of loop, combine
all copies with +

28

Launch-at-Elaboration

■ Associate a thread with a specific
subroutine

■ Start thread when subroutine gets
called

■ At end of subroutine, wait for thread to
complete

■ Thread shares local variables with the
subroutine

29 - 1

Example: Ada

procedure P is
task T is
Put_Line ("In task T");

end T;
begin
Put_Line ("In default task of P");

end P;

29 - 2

Example: Ada

procedure P is
task T is
Put_Line ("In task T");

end T;
begin
Put_Line ("In default task of P");

end P;

“Task” is Ada’s terminology
for “thread”

Runs concurrently
with (implicit) task
of P

30

Thread Creation Syntax

■ How to create a thread of execution?

■ Five answers in popular PLs

□ Co-begin

□ Parallel loops

□ Launch-at-elaboration

□ Fork (with optional join)

□ Implicit receipt

31

Fork/Join

■ Fork: Explicit creation of a thread

■ Join: Wait for a previously forked
thread to terminate

32 - 1

Example: Java

class ImageRenderer extends Thread {
ImageRenderer(someArg) { ... }
public void run() {
// code run by the thread

}
}

// ...

ImageRenderer rend = new ImageRenderer(...);
rend.start();
// ...
rend.join();

32 - 2

Example: Java

class ImageRenderer extends Thread {
ImageRenderer(someArg) { ... }
public void run() {
// code run by the thread

}
}

// ...

ImageRenderer rend = new ImageRenderer(...);
rend.start();
// ...
rend.join();

Threads: Subclasses of Thread

32 - 3

Example: Java

class ImageRenderer extends Thread {
ImageRenderer(someArg) { ... }
public void run() {
// code run by the thread

}
}

// ...

ImageRenderer rend = new ImageRenderer(...);
rend.start();
// ...
rend.join();

Threads: Subclasses of Thread

Share values with
thread via arguments

32 - 4

Example: Java

class ImageRenderer extends Thread {
ImageRenderer(someArg) { ... }
public void run() {
// code run by the thread

}
}

// ...

ImageRenderer rend = new ImageRenderer(...);
rend.start();
// ...
rend.join();

Threads: Subclasses of Thread

Share values with
thread via arguments

Lifetime of thread

33 - 1

Example: C#

class ImageRenderer {
public void Render() {
// code to be run by the thread

}
}

// ...

ImageRenderer rendObj = new ImageRenderer();
Thread rend = new Thread(

new ThreadStart(rendObj.Render));
rend.Start();
// ...
rend.Join();

33 - 2

Example: C#

class ImageRenderer {
public void Render() {
// code to be run by the thread

}
}

// ...

ImageRenderer rendObj = new ImageRenderer();
Thread rend = new Thread(

new ThreadStart(rendObj.Render));
rend.Start();
// ...
rend.Join();

Just a normal method ...

... turned into a thread

34

Thread Pools

■ Goal: Separate tasks to execute from
how they are executed in threads

■ Thread pool: Set of (idle) threads that
can execute tasks

□ Reduces cost of creating and starting threads

by reusing them

□ Let pool implementation decide how exactly to

schedule tasks for execution

35 - 1

Example: Java

class ImageRenderer implements Runnable {
ImageRenderer(someArg) { ... }
public void run() {
// code run by this task

}
}

// ...

Executor pool = Executors.newFixedThreadPool(4);
pool.execute(new ImageRenderer(...));

35 - 2

Example: Java

class ImageRenderer implements Runnable {
ImageRenderer(someArg) { ... }
public void run() {
// code run by this task

}
}

// ...

Executor pool = Executors.newFixedThreadPool(4);
pool.execute(new ImageRenderer(...));

Not a Thread anymore,
but only a Runnable

35 - 3

Example: Java

class ImageRenderer implements Runnable {
ImageRenderer(someArg) { ... }
public void run() {
// code run by this task

}
}

// ...

Executor pool = Executors.newFixedThreadPool(4);
pool.execute(new ImageRenderer(...));

Not a Thread anymore,
but only a Runnable

Pool with 4 threads used to
execute any number of tasks

36

Spawn and Sync in Cilk

■ Extension of C language

■ Programmer expresses tasks and their
dependencies

□ spawn calls a function to be executed as a

logically concurrent task

□ sync joins all tasks spawned by the calling task

■ Scheduler assigns tasks to processor
cores through work stealing

37 - 1

Example: Fibonacci

int fib (int n) {

if (n < 2) return 1;

else {

int res = 0;

res += fib (n - 1);

res += fib (n - 2);

return res;

}

}

Sequential implementation:

37 - 2

Example: Fibonacci

cilk int fib (int n) {

if (n < 2) return 1;

else {

int res = 0;

res += spawn fib (n - 1);

res += spawn fib (n - 2);

sync;

return res;

}

}

Parallel implementation with Cilk:

37 - 3

Example: Fibonacci

cilk int fib (int n) {

if (n < 2) return 1;

else {

int res = 0;

res += spawn fib (n - 1);

res += spawn fib (n - 2);

sync;

return res;

}

}

Parallel implementation with Cilk:

Execute in parallel
with parent

Wait until children
have returned

