
34

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Composite Types (Part 2)

35 - 1

Quiz: Pointer Warm-Up

What does the following C code print?

int *iptr = (int *) 0x1005;
char *cptr = (char *) 0x1005;

void *a = iptr+3;
void *b = cptr+3;

printf("%p %p\n", a, b);

35 - 2

Quiz: Pointer Warm-Up

What does the following C code print?

int *iptr = (int *) 0x1005;
char *cptr = (char *) 0x1005;

void *a = iptr+3;
void *b = cptr+3;

printf("%p %p\n", a, b);

Result: 0x1011 0x1008

35 - 3

Quiz: Pointer Warm-Up

What does the following C code print?

int *iptr = (int *) 0x1005;
char *cptr = (char *) 0x1005;

void *a = iptr+3;
void *b = cptr+3;

printf("%p %p\n", a, b);

Result: 0x1011 0x1008

Two pointers
initialized with
hexadecimal
numbers.

35 - 4

Quiz: Pointer Warm-Up

What does the following C code print?

int *iptr = (int *) 0x1005;
char *cptr = (char *) 0x1005;

void *a = iptr+3;
void *b = cptr+3;

printf("%p %p\n", a, b);

Result: 0x1011 0x1008

Adding 3*size(t) to
each pointer, where t

is the type the pointer
refers to.

36

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

□ Operations on Pointers

□ Pointers and Arrays in C

□ Dangling References

□ Garbage Collection

37

Motivation

■ Most programs handle complex data

■ “Linked” data structures to represent
them

□ Lists

□ Trees

□ Graphs

■ Often: Want reference to objects of
same type

38

Pointers and Recursive Types

■ Pointer: Reference to location of
memory object

□ Essentially, an address

■ Recursive type: Composite type with
reference to objects of the same type

39

Reference vs. Value Model

PLs with reference
model of variables

■ No need for explicit

pointers

■ Fields simply refer to

object of same (or

other) type

PLs with value
model of variables

■ Need explicit pointers

to refer to objects

■ Otherwise, would

always copy the entire

memory object

40

Example: Tree in OCaml

type chr_tree =
Empty |
Node of char * chr_tree * chr_tree;;

Tuple type with fields
separated by *

84

42

Example: Tree in C

struct chr_tree {
struct chr_tree *left, *right;
char var;

}; Pointers to objects of type
struct chr tree

85

44 - 1

Operations on Pointers

■ Creation

■ Allocation

■ Dereference

■ Deallocation

44 - 2

Operations on Pointers

■ Creation

■ Allocation

■ Dereference

■ Deallocation

Handled differently
in different PLs

45 - 1

Creating Pointers

■ Implicit when calling a constructor

■ Built-in function that allocates heap
memory and returns reference to it

■ Address-of operator

45 - 2

Creating Pointers

■ Implicit when calling a constructor

■ Built-in function that allocates heap
memory and returns reference to it

■ Address-of operator

Example (C++):
my_ptr = new chr_tree(/* ... */);

45 - 3

Creating Pointers

■ Implicit when calling a constructor

■ Built-in function that allocates heap
memory and returns reference to it

■ Address-of operator

Example (C):
my_ptr = malloc(sizeof(struct chr_tree));

45 - 4

Creating Pointers

■ Implicit when calling a constructor

■ Built-in function that allocates heap
memory and returns reference to it

■ Address-of operator

Example (C):
int n = 3;
my_ptr = &n;

46 - 1

Allocating Memory

■ Pointer itself is only an address

■ Need sufficient memory to hold the
object it refers to

■ Memory allocation

□ Implicit on some PLs (e.g., OCaml, Java)

□ Explicit in other PLs (e.g., C)

46 - 2

Allocating Memory

■ Pointer itself is only an address

■ Need sufficient memory to hold the
object it refers to

■ Memory allocation

□ Implicit on some PLs (e.g., OCaml, Java)

□ Explicit in other PLs (e.g., C)

Example (OCaml):
let t = Node(’R’, Empty, Empty);;

46 - 3

Allocating Memory

■ Pointer itself is only an address

■ Need sufficient memory to hold the
object it refers to

■ Memory allocation

□ Implicit on some PLs (e.g., OCaml, Java)

□ Explicit in other PLs (e.g., C)

Example (C):
my_ptr = malloc(sizeof(struct chr_tree));
// fill object with content

47 - 1

Dereferencing a Pointer

Access memory object a pointer refers to

■ Access entire object

□ Dereferencing operator

■ Access fields of record that the pointer refers to

□ Right-arrow notation

□ Dot notation:

Implicit dereferencing

47 - 2

Dereferencing a Pointer

Access memory object a pointer refers to

■ Access entire object

□ Dereferencing operator

■ Access fields of record that the pointer refers to

□ Right-arrow notation

□ Dot notation:

Implicit dereferencing

my_ptr̂ .val := ’X’;
Example (Pascal):

(*my_ptr).val = ’X’;
Example (C):

47 - 3

Dereferencing a Pointer

Access memory object a pointer refers to

■ Access entire object

□ Dereferencing operator

■ Access fields of record that the pointer refers to

□ Right-arrow notation

□ Dot notation:

Implicit dereferencing

my_ptr->val = ’X’;
Example (C):

47 - 4

Dereferencing a Pointer

Access memory object a pointer refers to

■ Access entire object

□ Dereferencing operator

■ Access fields of record that the pointer refers to

□ Right-arrow notation

□ Dot notation:

Implicit dereferencing

T : chr_tree;
P : chr_tree_ptr;
...
T.val := ’X’;
P.val := ’Y’;

Example (Ada):

48

Deallocation

■ Memory must be reclaimed at some
point
□ Otherwise: Memory leak and, eventually,

out-of-memory

■ Explicit deallocation by programmer
□ E.g., C, C++, Rust

■ Implicit deallocation by runtime:
Garbage collection

□ E.g., Java, C#, Python

49 - 1

Deallocation: Example
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *line = NULL;
size_t size = 0;
for(;;) {

/* read line from stdin;
implicitly allocates memory */

getline(&line, &size, stdin);
// ...
free(line);
line = NULL;

}
return 0;

}

49 - 2

Deallocation: Example
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *line = NULL;
size_t size = 0;
for(;;) {

/* read line from stdin;
implicitly allocates memory */

getline(&line, &size, stdin);
// ...
free(line);
line = NULL;

}
return 0;

}

Memory leak:
Each iteration
allocates memory
that gets never freed.

49 - 3

Deallocation: Example
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *line = NULL;
size_t size = 0;
for(;;) {

/* read line from stdin;
implicitly allocates memory */

getline(&line, &size, stdin);
// ...
free(line);
line = NULL;

}
return 0;

}

Fix: Free memory
in each iteration

50 - 1

Quiz: Memory Leak

How many bytes of memory are leaked
when executing the following code?
Assumption: ints occupy four bytes

int *c;
for (int i = 3; i <= 8; i += 2) {

c = malloc(sizeof(int));
if ((i-1) % 3 == 0) {

free(c);
}

}

50 - 2

Quiz: Memory Leak

How many bytes of memory are leaked
when executing the following code?
Assumption: ints occupy four bytes

int *c;
for (int i = 3; i <= 8; i += 2) {

c = malloc(sizeof(int));
if ((i-1) % 3 == 0) {

free(c);
}

}

Answer: 8 bytes

50 - 3

Quiz: Memory Leak

How many bytes of memory are leaked
when executing the following code?
Assumption: ints occupy four bytes

int *c;
for (int i = 3; i <= 8; i += 2) {

c = malloc(sizeof(int));
if ((i-1) % 3 == 0) {

free(c);
}

}

Answer: 8 bytes

Iterations with
i being 3, 5,
and 7

50 - 4

Quiz: Memory Leak

How many bytes of memory are leaked
when executing the following code?
Assumption: ints occupy four bytes

int *c;
for (int i = 3; i <= 8; i += 2) {

c = malloc(sizeof(int));
if ((i-1) % 3 == 0) {

free(c);
}

}

Answer: 8 bytes

Iterations with
i being 3, 5,
and 7

Memory freed
only when i is 7

51

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

□ Operations on Pointers

□ Pointers and Arrays in C

□ Dangling References

□ Garbage Collection

52 - 1

Pointers and Arrays in C

■ Closely linked language constructs

■ Example

int n;
int *a;
int b[5] = {1,2,3,4,5};

a = b;
n = a[3];
n = *(a+3);
n = b[3];
n = *(b+3);

52 - 2

Pointers and Arrays in C

■ Closely linked language constructs

■ Example

int n;
int *a;
int b[5] = {1,2,3,4,5};

a = b;
n = a[3];
n = *(a+3);
n = b[3];
n = *(b+3);

Pointer to the initial
element of b

52 - 3

Pointers and Arrays in C

■ Closely linked language constructs

■ Example

int n;
int *a;
int b[5] = {1,2,3,4,5};

a = b;
n = a[3];
n = *(a+3);
n = b[3];
n = *(b+3);

All store 4 into n

53

Array Access = Pointer Arithmetic

■ Subscript operator [] defined in terms
of pointer arithmetic:

E1[E2] means (*((E1)+(E2)))

□ For any expressions E1 and E2

■ E.g., arr[3] is equivalent to 3[arr]

54

More Pointer Arithmetic

Arithmetic operations beyond addition

■ Subtraction

□ Get distance between two elements:

p1 - p2 where both are pointers to elements in the

same array

■ Comparison

□ Check if one element is at higher index than another:

p1 > p2

■ All scaled according to type of pointer

55

Difference: Allocation

Main difference between arrays and
pointers

■ Arrays are implicitely allocated:
int arr[10]; allocates space for ten ints

■ Pointers must be explicitedly allocated:

int *arr; does not allocate anything

56

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

□ Operations on Pointers

□ Pointers and Arrays in C

□ Dangling References

□ Garbage Collection

57

Dangling References

■ Dangling reference: Live pointer that
no longer points to a valid object

■ Dual problem to memory leaks
■ Created when

□ Pointer to stack object escapes to surrounding

context

□ Heap object is explicitely deallocated, but

pointer lives on

■ Behavior of dereferencing: Undefined

58 - 1

Quiz: Dangling References

At which line(s) does this C code use a
dangling reference?

1 char *foo() {
2 char *cp = malloc(sizeof(char));
3 return cp;
4 }
5 int main(void) {
6 char *csp = malloc(5 * sizeof(char));
7 csp[0] = ’a’;
8 csp[2] = *foo();
9 csp[4] = ’c’;

10 free(csp);
11 printf("%c %c %c\n", csp[0], csp[2], csp[4]);
12 }

58 - 2

Quiz: Dangling References

At which line(s) does this C code use a
dangling reference?

1 char *foo() {
2 char *cp = malloc(sizeof(char));
3 return cp;
4 }
5 int main(void) {
6 char *csp = malloc(5 * sizeof(char));
7 csp[0] = ’a’;
8 csp[2] = *foo();
9 csp[4] = ’c’;

10 free(csp);
11 printf("%c %c %c\n", csp[0], csp[2], csp[4]);
12 }

Dangling references
(because free was called)

59

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

□ Operations on Pointers

□ Pointers and Arrays in C

□ Dangling References

□ Garbage Collection

60

Garbage Collection

■ Memory deallocation managed by
PL implementation
□ Avoids dangling references

□ Programmer can focus on other aspects of the
code

■ Common in “managed languages”,
e.g., Java, Python, JavaScript

61

Reference Counts

How to implement garbage collection?

■ One counter for each memory object

■ Increment when new pointer to object created

■ Decrement when pointer gets destroyed

□ E.g., for pointers to local variables, on function return

■ Deallocate “useless” objects, i.e., with reference

count zero

62

Circular Dependencies

■ Problem of naive implementation:
Circular data structures

□ Memory object may be “useless” despite

having references pointing to it

■ Better approach

□ Object o is “useless” unless a chain of valid

pointers from something that has a name to o

exists

86

64

Circular Dependencies

■ Problem of naive implementation:
Circular data structures
□ Memory object may be “useless” despite

having references pointing to it

■ Better approach
□ Object o is “useless” unless there is a

chain of valid pointers

• from a name with an active binding

• to o

65

Mark and Sweep

Algorithm to identify useless blocks

■ Walk heap and mark every block as useless

■ Start from external references (i.e., names in

program) and mark every reachable block as

useful

■ Move all useless blocks to free list

□ Free list: Data structure to maintain free heap space

66

Optimizations and Other Algorithms

■ Various improvements of simple mark
and sweep

□ Pointer reversal: Traversal without a stack of

visited blocks

□ Stop-and-copy: Prevent fragmentation

□ Generational garbage collection: Maintain older

and newer memory objects in separate

subheaps

67

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

□ Operations on Pointers

□ Pointers and Arrays in C

□ Dangling References

□ Garbage Collection ✔

