Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023
1

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

int[] a, b;
int ¢, d[];

a = new int[2];
d= a;

b = new char[3];
c = new int[4];

- 1

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

int[] a, b; «=— Both a and b are
int ¢, d[]; int arrays.

a = new int[2];
d= a;

b = new char[3];
c = new int[4];

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

int[] a, b;
int ¢, d[]; «—— clisanint,
d is an int array.
a = new int[2];
d= a;
b = new char[3];
c = new int[4];

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

int[] a, b;
int ¢, d[];

a = new int[2];

d= a;

b = new char[3]; e—
c = new int[4];

Error 1: char array is
incompatible with int array.

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

int[] a, b;
int ¢, d[];

a = new int[2];
d= a;
b = new char[3];

¢ = new int[4]; Error 2: Can’t assign

int array to int variable.

Composite Types

= New types formed by joining together
simpler types using a type constructor

= Common type constructors
o Records
o Arrays
0 Strings
0 Sets
o Pointers

o Lists

Overview

s Records «——
= Arrays
= Pointers and Recursive Types

Records

s A.k.a. structures or structs

= Store and manipulate related data of
heterogeneous types together

o Each data component is a field
= Originate from
0 Cobol: Introduced concept

1 Algol 68: Introducted st ruct keyword

Example

A struct in C:

struct element {
char name[2];
int atomic number;
double atamic weight;
_Bool metallic;

};

// defines a record
// with four fields

- 1

Example

A struct in C:
struct element { // defines a record
char name[2]; // with four fields

int atomic number;
double atamic weight;
_Bool metallic;

};

struct element copper; // variable of record type
copper.name[0] = 'C’;
// ...
if (copper.metallic) { // access fields with
/] ... // dot notation

}

Variants Available in Most PLs

Most PLs offer some record-like type
constructor

m C: structs

m C++: special form of class

m Fortran 90: simple called “types”

m C#, Swift: struct types (as opposed to class types)
m OCaml: tuples (where order of fields is irrelevant)

m Java: since Java 14, “records” but with immutable
fields

Memory Layout

How are records stored in memory?

m Usually, fields stored in adjacent locations
m Field access: Address + offset
m Alignment constraints may create “holes”

0 Alignment constraints depend on architecture

0 E.g., 4-byte ints on x86 must start at address
divisible by 4

£7< &w\{)L(/‘. MQ\/\AO'D La30w+

e buykes = 32 bids

{
| L

N aown & }//////i

O\A_OVV\\. c — Nnuanloe 7

) \
) e

. |

\\ﬁ_*au{(.'/////'/i//’

77

Packing and Recording

How to optimize for space?
m Option 1: Packing
0 Avoid holes and break alignment

0 Will need additional instructions to operate on fields

(e.g., to reassemble value into register)
m Option 2: Reordering fields

0 Minimize holes but respect alignment

10 -

1

Packing and Recording

How to optimize for space?
m Option 1: Packing
0 Avoid holes and break alignment

0 Will need additional instructions to operate on fields

(e.g., to reassemble value into register)
m Option 2: Reordering fields
o Minimize holes but respect alignment

Can instruct compiler to pack a record (e.g.,
via pragmas in gcc)

10 -

Packing and Recording

How to optimize for space?
m Option 1: Packing
0 Avoid holes and break alignment

0 Will need additional instructions to operate on fields

(e.g., to reassemble value into register)
m Option 2: Reordering fields
o Minimize holes but respect alignment

System-level programmer may rely on memory
layout: C and C++ don’t reorder fields

10 -

Quiz: Memory Layout of Records

How many bytes does an array of three
of the following structs need (without
packing)?

Assumptions:

struct quiz { m Size of char: 1 byte

int k; m Size of int: 4 bytes
void xfct; m Size of float: 4 bytes
char name[2]; | L
float rates[3]; m Size of pointer: 8 bytes
}; m Floats must be aligned
(divisible by 4)

m Pointers must be aligned
(divisible by 8) 11

' Corﬁci—e& >
(va(% s ﬂt\m\ou,) L$w+ 8,-\— Reeords (

A

J = L2 Liyes
v

‘ voame ‘ﬁ/// Ak ‘0:)*5

79

Quiz: Memory Layout of Records

How many bytes does an array of three
of the following structs need (without
packing)?

Assumptions:

struct quiz { m Size of char: 1 byte

int k; m Size of int: 4 bytes

void xfct; m Size of float: 4 bytes

char name[2]; | L

float rates[3]; m Size of pointer: 8 bytes
}; m Floats must be aligned

(divisible by 4)

Tip: Check it yourself with m Pointers must be aligned

sizeof (struct quiz)) (divisible by 8) 19

Nested Records

= Option 1: Lexically nested

struct outer record {
char some field[1l0];
struct { // no name for this inner record
int some other field;
double yet another field;
} nested field;

}i
= Option 2: Fields of record type

struct outer record {
char some field[1l0];
struct inner record nested field;

};

14

Semantics of Nested Records

What’s the meaning of referring to a
hested record?

struct S sl;

struct S s2;

sl.n.j = 0;

s2 = sl;

s2.n.j =17,

print ("$d\n", sl.n.j);

15 -

1

Semantics of Nested Records

What’s the meaning of referring to a
hested record?

struct S sl;

struct S s2;

sl.n.j = 0;

s2 = sl;

s2.n.j =17,

print ("$d\n", sl.n.j);

Does it print 0 or 7?

15 -

Reference Model vs. Value Model

= Occurrence of a variable may mean
0 a reference to its memory location
1 the value stored in the variable
=« E.g., C:
o Reference model if variable is left-hand side of
assignment
0 Value model otherwise
B Eg, Java:

o Value model only for built-in types

16

EXowu\r\&
C :
stewcd T {
G
Wk L
g\mc*’ S §
‘svﬁ‘ -
g—\\ruv\' T n

c\o\QS T ?
w k’lc \)
q) \9 V‘A);
Q}\/\‘O\AC/ swh L‘;

c\ass S Z

P\,\lgtqg oV\'L ;

-1

s |s

sd .

80

Semantics of Nested Records

What’s the meaning of referring to a
hested record?

// C code // Java code
struct S sl; S sl = new S();
struct S s2; sl.n = new T();
sl.n.j = 0; sl.n.j =0;

s2 = sl; S s2 = sl;
s2.n.j =17, s2.n.j =17,

print ("$d\n", sl.n.j); System.out .println(sl.n.j);

18 -

1

Semantics of Nested Records

What’s the meaning of referring to a
hested record?

// C code // Java code
struct S sl; S sl = new S();
struct S s2; sl.n = new T();
sl.n.j = 0; sl.n.j =0;

s2 = sl; S s2 = sl;
s2.n.j =17, s2.n.j =17,

print ("$d\n", sl.n.j); System.out .println(sl.n.j);

Prints 0 Prints 7

18 -

Variant Records (Unions)

= Special kind of record

s Reuses same memory location for
multiple variables

o Assumption: Variables never used at the same
time

0 Size of record = size of largest member

19

Demo

Demo: union.c

20

“*MW’ Uuniow i

-

32 bk = ko bykes

\

dota . b

vo ctomeel hare (slﬂ‘u(—&”(\: 1 b)—k()

0&4\40{ \\ NS Sf*()*“(o\ {/\&“(

(wne (W) = 4 5:)4"5)

Ada . d i< S%Hak W e
(cie (Ok""\[?\")"' 8 bb;q)

81

Use Cases for Unions

= Bytes interpreted differently at
different times

0 E.g., implementation of memory manager:
Memory blocks contain bookkeeping

iInformation and user data

= Represent single data type with
alternative sets of fields

o E.g., record for employees:

Properties depend on department of employee .

Overview

= Records
= Arrays +—

= Pointers and Recursive Types

23

Arrays

= Most common composite data type

= Conceptually: Mapping from index
type to element type

o Index types: Usually a discrete type, e.g.,
integer

o Element type: Usually any type

24

Syntax

Varies across PLs

m Declaration

0 C:char upper[26];

0 Fortran: character (26) upper
m Accessing elements

0 C:upper[3] (indices start at 0)

0 Fortran: upper (3) (indices start at 1)

25

Multi-Dimensional Arrays

= Indexing along multiple dimensions
0 Single dimension: Sequence of elements
o Two dimensions: 2D matrix of elements
1 Three dimensions: 3D matrix of elements
0O efc.

= E.g., two-dimensional array in C:
int arr([3][4];

0 3 rows, 4 columns
26

Array Operations

= Slicing: Extract “rectangular” portion
of array

0 Some PLs: Along multiple dimensions

= Comparison

0 Element-wise comparison of arrays of equal
length:

arrl < arr?

s Mathematical operations

o Element-wise addition, subtraction, etc.

27

EKW{)L'» AV“MD g\/\tc\'vv\ v Torhany

19 % 10 aan v vaatA >

o

Ny\-{,: Tortcoan v <o luivn — V\’\N")W adexiw
T

~<
2z 13

1

|\

\

| —

A 3 L v

’ el (

NERIHE
NMIER

NND
NRRR

X
M

]
\
\\

1N
\\\
\
\\\

D
\
N
©

Memory Layout

= Single dimension: Elements are
contiguous in memory

= Multiple dimensions
o Option 1: Contiguous, row-major layout
« E.g.,inC
0 Option 2: Contiguous, column-major layout
« E.g., In Fortran
0 Option 3: Row-pointer layout

. E.g., in Java

29

Exw‘,\;, wt are [2'1[:4} = ?

fa 3 % g,
NN
ey
j 0V Y) ﬁgﬁn{;ﬁs
Rowwwafors 2T 5 [y o 16 1] 8 (
(/O\uum“w\‘ko'; L
s L Mic1z]6)3\ +1 ul¢) l
Row poindus: v |
T Lol 123

Significance of Memory Layout

Layout determines efficiency of nested
loops that iterate through
multi-dimensional arrays

m CPU fetches entire cache lines from memory
m Accessing all data in a cache line is efficient

m Accessing data outside of current cache line:
Cache miss

0 Causes expensive reading of another cache line

31

Quiz: Efficient Array Access

Given a large, two-dimensional array,
which loop is faster in C and Fortran?

// C code, option 1
for (i=0; i<N; i++) {
for (j=0; J<N; j++) {
// access arr[i] [J]
}
}

// C code, option 2
for (3=0; J<N; J++) {
for (i=0; i<N; i++) {
// access arr[i] [J]
}
}

! Fortran code, option 1
do i=1,N
do jJ=1,N
! access arr(i, j)
end do
end do

! Fortran code, option 2
do jJ=1,N
do i=1,N
! access arr(i, j)
end do
end do

32 -

1

Quiz: Efficient Array Access

Given a large, two-dimensional array,
which loop is faster in C and Fortran?

// C code, option 1 ! Fortran code, option 1
for (i=0; i<N; i++) { do i=1,N
for (3=0; J<N; j++) { do jJ=1,N
// access arr[i] [J] ! access arr(i, j)
} end do
} end do
// C code, option 2 ! Fortran code, option 2
for (3=0; JW; jH+) { do j=1,N
for (1=0; i<N; i++) { do i=1,N
// access arr[i] [J] ! access arr(i, j)
} end do

} end do

32 -

Overview

= Records
= Arrays ‘/
= Pointers and Recursive Types

33

