
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Programming Paradigms

Composite Types (Part 1)



2 - 1

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

1 int[] a, b;
2 int c, d[];
3
4 a = new int[2];
5 d = a;
6 b = new char[3];
7 c = new int[4];

https://ilias3.uni-stuttgart.de/vote/0ZT9



2 - 2

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

1 int[] a, b;
2 int c, d[];
3
4 a = new int[2];
5 d = a;
6 b = new char[3];
7 c = new int[4];

https://ilias3.uni-stuttgart.de/vote/0ZT9

Both a and b are
int arrays.



2 - 3

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

1 int[] a, b;
2 int c, d[];
3
4 a = new int[2];
5 d = a;
6 b = new char[3];
7 c = new int[4];

https://ilias3.uni-stuttgart.de/vote/0ZT9

c is an int,
d is an int array.



2 - 4

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

1 int[] a, b;
2 int c, d[];
3
4 a = new int[2];
5 d = a;
6 b = new char[3];
7 c = new int[4];

https://ilias3.uni-stuttgart.de/vote/0ZT9

Error 1: char array is
incompatible with int array.



2 - 5

Quiz: Warm-Up

Which (if any) of the following lines lead
to a compile-time error in Java?

1 int[] a, b;
2 int c, d[];
3
4 a = new int[2];
5 d = a;
6 b = new char[3];
7 c = new int[4];

https://ilias3.uni-stuttgart.de/vote/0ZT9

Error 2: Can’t assign
int array to int variable.



3

Composite Types

■ New types formed by joining together
simpler types using a type constructor

■ Common type constructors
□ Records

□ Arrays

□ Strings

□ Sets

□ Pointers

□ Lists



4

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types



5

Records

■ A.k.a. structures or structs

■ Store and manipulate related data of
heterogeneous types together

□ Each data component is a field

■ Originate from

□ Cobol: Introduced concept

□ Algol 68: Introducted struct keyword



6 - 1

Example

A struct in C:
struct element { // defines a record
char name[2]; // with four fields
int atomic_number;
double atomic_weight;
_Bool metallic;

};



6 - 2

Example

A struct in C:
struct element { // defines a record
char name[2]; // with four fields
int atomic_number;
double atomic_weight;
_Bool metallic;

};

struct element copper; // variable of record type
copper.name[0] = ’C’;
// ...
if (copper.metallic) { // access fields with

// ... // dot notation
}



7

Variants Available in Most PLs

Most PLs offer some record-like type
constructor

■ C: structs

■ C++: special form of class

■ Fortran 90: simple called “types”

■ C#, Swift: struct types (as opposed to class types)

■ OCaml: tuples (where order of fields is irrelevant)

■ Java: since Java 14, “records” but with immutable

fields



8

Memory Layout

How are records stored in memory?

■ Usually, fields stored in adjacent locations

■ Field access: Address + offset

■ Alignment constraints may create “holes”

□ Alignment constraints depend on architecture

□ E.g., 4-byte ints on x86 must start at address

divisible by 4



77



10 - 1

Packing and Recording

How to optimize for space?

■ Option 1: Packing

□ Avoid holes and break alignment

□ Will need additional instructions to operate on fields

(e.g., to reassemble value into register)

■ Option 2: Reordering fields

□ Minimize holes but respect alignment



10 - 2

Packing and Recording

How to optimize for space?

■ Option 1: Packing

□ Avoid holes and break alignment

□ Will need additional instructions to operate on fields

(e.g., to reassemble value into register)

■ Option 2: Reordering fields

□ Minimize holes but respect alignment

Can instruct compiler to pack a record (e.g.,
via pragmas in gcc)



10 - 3

Packing and Recording

How to optimize for space?

■ Option 1: Packing

□ Avoid holes and break alignment

□ Will need additional instructions to operate on fields

(e.g., to reassemble value into register)

■ Option 2: Reordering fields

□ Minimize holes but respect alignment

System-level programmer may rely on memory
layout: C and C++ don’t reorder fields



11

Quiz: Memory Layout of Records

How many bytes does an array of three
of the following structs need (without
packing)?

struct quiz {
int k;
void *fct;
char name[2];
float rates[3];

};

Assumptions:

■ Size of char: 1 byte

■ Size of int: 4 bytes

■ Size of float: 4 bytes

■ Size of pointer: 8 bytes

■ Floats must be aligned
(divisible by 4)

■ Pointers must be aligned
(divisible by 8)



79



13

Quiz: Memory Layout of Records

How many bytes does an array of three
of the following structs need (without
packing)?

struct quiz {
int k;
void *fct;
char name[2];
float rates[3];

};

Assumptions:

■ Size of char: 1 byte

■ Size of int: 4 bytes

■ Size of float: 4 bytes

■ Size of pointer: 8 bytes

■ Floats must be aligned
(divisible by 4)

■ Pointers must be aligned
(divisible by 8)

Tip: Check it yourself with
sizeof(struct quiz))



14

Nested Records

■ Option 1: Lexically nested

■ Option 2: Fields of record type

struct outer_record {
char some_field[10];
struct { // no name for this inner record
int some_other_field;
double yet_another_field;

} nested_field;
};

struct outer_record {
char some_field[10];
struct inner_record nested_field;

};



15 - 1

Semantics of Nested Records

What’s the meaning of referring to a
nested record?

struct S s1;
struct S s2;
s1.n.j = 0;
s2 = s1;
s2.n.j = 7;
print("%d\n", s1.n.j);



15 - 2

Semantics of Nested Records

What’s the meaning of referring to a
nested record?

struct S s1;
struct S s2;
s1.n.j = 0;
s2 = s1;
s2.n.j = 7;
print("%d\n", s1.n.j);

Does it print 0 or 7?



16

Reference Model vs. Value Model

■ Occurrence of a variable may mean
□ a reference to its memory location

□ the value stored in the variable

■ E.g., C:
□ Reference model if variable is left-hand side of

assignment

□ Value model otherwise

■ E.g., Java:
□ Value model only for built-in types



80



18 - 1

Semantics of Nested Records

What’s the meaning of referring to a
nested record?

// C code
struct S s1;
struct S s2;
s1.n.j = 0;
s2 = s1;
s2.n.j = 7;
print("%d\n", s1.n.j);

// Java code
S s1 = new S();
s1.n = new T();
s1.n.j = 0;
S s2 = s1;
s2.n.j = 7;
System.out.println(s1.n.j);



18 - 2

Semantics of Nested Records

What’s the meaning of referring to a
nested record?

// C code
struct S s1;
struct S s2;
s1.n.j = 0;
s2 = s1;
s2.n.j = 7;
print("%d\n", s1.n.j);

Prints 0

// Java code
S s1 = new S();
s1.n = new T();
s1.n.j = 0;
S s2 = s1;
s2.n.j = 7;
System.out.println(s1.n.j);

Prints 7



19

Variant Records (Unions)

■ Special kind of record

■ Reuses same memory location for
multiple variables

□ Assumption: Variables never used at the same

time

□ Size of record = size of largest member



20

Demo

Demo: union.c



81



22

Use Cases for Unions

■ Bytes interpreted differently at
different times
□ E.g., implementation of memory manager:

Memory blocks contain bookkeeping

information and user data

■ Represent single data type with
alternative sets of fields
□ E.g., record for employees:

Properties depend on department of employee



23

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types



24

Arrays

■ Most common composite data type

■ Conceptually: Mapping from index
type to element type

□ Index types: Usually a discrete type, e.g.,

integer

□ Element type: Usually any type



25

Syntax

Varies across PLs

■ Declaration

□ C: char upper[26];

□ Fortran: character (26) upper

■ Accessing elements

□ C: upper[3] (indices start at 0)

□ Fortran: upper(3) (indices start at 1)



26

Multi-Dimensional Arrays

■ Indexing along multiple dimensions

□ Single dimension: Sequence of elements

□ Two dimensions: 2D matrix of elements

□ Three dimensions: 3D matrix of elements

□ etc.

■ E.g., two-dimensional array in C:
int arr[3][4];

□ 3 rows, 4 columns



27

Array Operations

■ Slicing: Extract “rectangular” portion
of array
□ Some PLs: Along multiple dimensions

■ Comparison
□ Element-wise comparison of arrays of equal

length:

arr1 < arr2

■ Mathematical operations
□ Element-wise addition, subtraction, etc.



82



29

Memory Layout

■ Single dimension: Elements are
contiguous in memory

■ Multiple dimensions
□ Option 1: Contiguous, row-major layout

• E.g., in C

□ Option 2: Contiguous, column-major layout

• E.g., in Fortran

□ Option 3: Row-pointer layout

• E.g., in Java



83



31

Significance of Memory Layout

Layout determines efficiency of nested
loops that iterate through
multi-dimensional arrays

■ CPU fetches entire cache lines from memory

■ Accessing all data in a cache line is efficient

■ Accessing data outside of current cache line:

Cache miss

□ Causes expensive reading of another cache line



32 - 1

Quiz: Efficient Array Access

Given a large, two-dimensional array,
which loop is faster in C and Fortran?
// C code, option 1
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
// access arr[i][j]

}
}

// C code, option 2
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
// access arr[i][j]

}
}

! Fortran code, option 1
do i=1,N
do j=1,N
! access arr(i,j)

end do
end do

! Fortran code, option 2
do j=1,N
do i=1,N
! access arr(i,j)

end do
end do



32 - 2

Quiz: Efficient Array Access

Given a large, two-dimensional array,
which loop is faster in C and Fortran?
// C code, option 1
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
// access arr[i][j]

}
}

// C code, option 2
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
// access arr[i][j]

}
}

! Fortran code, option 1
do i=1,N
do j=1,N
! access arr(i,j)

end do
end do

! Fortran code, option 2
do j=1,N
do i=1,N
! access arr(i,j)

end do
end do



33

Overview

■ Records

■ Arrays

■ Pointers and Recursive Types

✔


