
Programming Paradigms Prof. Dr. Michael Pradel

University of Stuttgart, Summer 2023

Exercise 5: Composite Types

(Deadline for uploading solutions: July 6, 2023, 11:59pm Stuttgart time)

The materials provided for this homework are:

• a pdf file with the text of the homework (this);

• a zip file with the folder structure and the templates that must be used for the submission.

The folder structure is shown in Figure 1.

exercise5.zip

task 1

task1.csv (Insert your solution in this file)

task 2

structBag.csv (Insert your solution in this file)

structSuitcase.csv (Insert your solution in this file)

task 3

puzzle1.c (Insert your solution in this file)

puzzle2.c (Insert your solution in this file)

puzzle3.c (Insert your solution in this file)

task 4

pl c

LibraryCatalog.c (Insert your solution in this file)

LibraryCatalogTest.c

pl java

lib/*.jar

src

LibraryCatalog.java (Insert your solution in this file)

LibraryCatalogTest.java

TestRunner.java

pl python

LibraryCatalog.py (Insert your solution in this file)

LibraryCatalogTest.py

Figure 1: Directory structure in the provided .zip file and in your uploaded solution file.

1



The submission must be compressed in a zip file using the given folder structure. The names of folders and
files must not be changed or moved, otherwise the homework will not be evaluated.

General tips for making sure your submission is graded as you expect:

• Use only the zip format for the archive (NOT rar, 7z, gz, or anything else).

• Do not rename files or folders, simply open the files provided and put your solutions.

2



1 Task I (10% of total points of the exercise)

This task is to check your understanding of some basic concepts around composite types. For that, we give you
code snippets written in C/C++. You have to answer one question per snippet by selecting exactly one
correct answer out of multiple choices. To submit your answer, please fill in the file exercise5/task 1/task1.csv
by adding either “A”, “B”, or “C” to the corresponding line.

Code Snippet 1

1 struct foo {

2 int n;

3 char cs[8];

4 _Bool b;

5 };

Which statement is true for Code Snippet 1?

A struct foo is a primitive type.

B struct foo is a composite type.

C struct foo is a function.

Code Snippet 2

1 struct s1 {

2 int n;

3 };

4 struct s2 {

5 struct s1 s1;

6 };

7

8 struct s2 x;

9 x.s1.n = 3;

10 struct s2 y;

11 y.s1 = x.s1;

12 y.s1.n = 5;

13 printf("%d\n", x.s1.n);

Which statement is true for Code Snippet 2?

A The code prints 3 because y.s1 is a copy of x.s1, and hence, the write to y.s1.n does not affect x.s1.n.

B The code prints 3 because x.s1 and y.s1 are references to the same memory object.

C The code prints 3 because the write to x.s1.n is reordered by the compiler so that it happens after the
write to y.s1.n.

Code Snippet 3

1 int arr [3][4] = {

2 {1,2,3,4},

3 {5,6,7,8},

4 {9,10,11,12}

5 };

6

7 int sum = 0;

8 for (int j=0; j<3; j++) {

9 for (int i=0; i<4; i++) {

10 sum += arr[j][i];

11 }

12 }

Which statement is false for Code Snippet 3?

A To improve efficiency, the code should change arr[j][i] to arr[i][j].

B The code access the elements of the array in the same order as they are stored in memory.

3



C The code accesses a multi-dimensional array that is stored in row-major layout.

Code Snippet 4

1 struct n {

2 int val;

3 struct n* left;

4 struct n* right;

5 };

6

7 struct n n1;

8 struct n n2;

9 struct n n3;

10 n1.left = &n2;

11 n1.right = &n3;

12 n1.right ->val = 42;

13 printf("%d\n", n3.val); // prints 42

Which statement is false for Code Snippet 4?

A Lines 7, 8, and 9 should call malloc to ensure that there is enough memory to store the structs.

B Line 10 uses & to store a reference to the n2 into the left field..

C Line 12 uses -> to dereference the pointer and then access its val field.

Code Snippet 5

1 double *ds = malloc (5 * sizeof(double ));

2 for (int i=0; i<5; i++) {

3 ds[i] = 1.234;

4 }

5 free ();

Which statement is true for Code Snippet 5?

A The code correctly frees all allocated memory.

B The code should remove the call to free because memory objects allocated with malloc are implicitly
freed anyway.

C The code should pass the pointer ds to free to actually free its memory.

Evaluation Criteria: Your answers will be compared against the correct ones.

4



2 Task II (20% of total points of the exercise)

This task is about the memory layout of structs and alignment in C (or other “systems” languages). Given
several definitions of structs in C and several sets of rules, you should compute the memory layout of each
struct for each set of rules. That is, you should determine at which offset each field starts and the overall
size of the struct in memory. Table 1 shows the sizes and natural alignment of primitive types.

Types Size (byte) Natural alignment (byte)

char 1 no alignment
int 4 4
float 4 8
pointer 8 8

Table 1: Size and natural alignment of primitive types. Natural alignment, where memory access of the
underlying architecture would be fastest. An alignment requirement of 4 bytes means that the byte offset of
that field must divide without remainder by 4. The first offset in each struct is 0.

You have to compute the most compact memory layout for each struct under the following rules:

• Packed: The natural alignment requirements (see above) do not have to be respected, i.e., each field can
start at an arbitrary offset. The order of fields must not be changed.

• Default: The above alignment requirements must be respected for each field. The order of fields must
not be changed.

• Reordered: The above alignment requirements must be respected for each field, but the order of fields
can be changed compared with the declaration. (But not across structs, that would change semantics.)

The two struct definitions are:

Struct Bag

1 struct Bag {

2 char brand [20];

3 float *price;

4 int sales;

5 };

Struct Suitcase

1 struct Date {

2 int month;

3 int year;

4 };

5

6 struct Suitcase {

7 char brand [15];

8 int sales;

9 struct Date productionDate;

10 struct Size {

11 float length;

12 float width;

13 float height;

14 } size;

15 };

For solving the task, it may be useful to draw layout figures with pen and paper, similar to the lecture. However,
your final answers must be submitted in the structBag.csv and structSuitcase.csv files in the exercise5/task 2/
directory. There is one row for each field of the struct and a final row for the overall size in bytes. For the
fields, fill in the offset (i.e., the byte index at which the field begins), viewed from the start of the outermost

5



Struct Bag: Field / Rule: Packed Byte offset

brand 0
price 20
sales 28

Overall size of the struct 32

Table 2: The layout of struct Bag under the packed rule.

struct, in the columns corresponding to each of the three rules. Table 2 shows the layout of struct Bag under
the packed rule. The solution is already filled into the solution template in exercise5/task 2/structBag.csv.

Evaluation Criteria: Your solution will be compared against the correct byte offsets of each struct field and
the correct overall struct size under each set of alignment requirements.

6



3 Task III (30% of total points of the exercise)

This task is about pointer arithmetic and arrays in C/C++. You are provided with three slightly incorrect
programs and have to fix them, so they actually offer the behavior specified by the comments in the code. See
exercise5/task 3/puzzle*.c for the three programs to fix. You are allowed to modify only those parts of the code
between the “start modify” and “end modify” comments. Each provided program has one or more bugs, i.e.,
you will need to modify one or more lines of the given code.

The solution should be implemented in C17, i.e., the most recent standard for the C programming language.
We recommend using the gcc compiler, which is compatible with C17. We will use gcc version 11.3.0 for
grading.

Evaluation Criteria: Your code will be evaluated by running tests that check whether your implementation
matches the behavior specified in the comments.

7



4 Task IV (40% of total points of the exercise)

This task is about composite types and the differences between reference model and value model. You will
write a small program that models a library catalog, using three different languages: Java, C, and Python. For
each language, we provide an incomplete program for you to complete. In particular, you should implement
the addNewVersion function in all three languages. You can run the code by using the provided main function,
and test it with the provided test cases. Figure 2 shows the overall architecture of the expected library catalog.

LibraryCatalog

Book 1

title

author

VersionInfo

version

date

Bibliography

Book 5

...

Book 2

...

...

Figure 2: Overall architecture of the library catalog.

Here are several requirements for implementing the addNewVersion function:

• It should allow adding a new version of an existing book to the catalog by using existing information
(title, author, and bibliography). After adding a new version, the book should have two entries in the
catalog, one for the existing, old version, and another for the newly added version.

• There should be a message if the book you want to add a new version for is not in the catalog. See the
code for the exact message.

Notes: Our test cases for this task will call the newly implemented addNewVersion function and also the given
functions. That is, do not change the code in the provided functions. We provide several test cases in the
corresponding Test file. As usual, adding further test cases is recommended.

The assignment should be implemented in Java (version >= 20), C17 (will be tested with gcc 11.3.0), and
Python (version >= 3.8).

Evaluation Criteria: Your code will be evaluated by running on a set of test cases. For any of the languages,
do not use any third-party dependencies, except for the libaries that are already included in the given C code,
and for Java, the jar given in /task 4/pl java/lib/ for running the tests.

8


	Task I (10% of total points of the exercise)
	Task II (20% of total points of the exercise)
	Task III (30% of total points of the exercise)
	Task IV (40% of total points of the exercise)

