
Programming Paradigms Prof. Dr. Michael Pradel

University of Stuttgart, Summer 2023

Exercise 3: Control flow

(Deadline for uploading solutions: June 8, 2023, 11:59pm Stuttgart time)

The materials provided for this homework are:

• a pdf file with the text of the homework (this);

• a zip file with the folder structure and the templates that must be used for the submission.

The folder structure is shown in Figure 1.

exercise3.zip

task1

task1.csv

task2

Tree.py

IteratorTest.py

task3

src

main

scala

Main.scala

Figure 1: Folder structure to use for submission.

The submission must be compressed in a zip file using the given folder structure. The names of folders and
files must not be changed or moved, otherwise the homework will not be evaluated.

General tips for making sure your submission is graded as you expect:

• Use only the zip format for the archive (NOT rar, 7z, gz, or anything else).

• Do not rename files or folders, simply open the files provided and put your solutions.

1

1 Task I (25% of total points of the exercise)

The goal of this task is to evaluate the given expressions under different sets of rules for precedence and
associativity. Table 1 defines two sets of rules.
Task: (To submit your answer, please fill in the file exercise3/task1/task1.csv.)

• Using the Rules 1 in Table 1, evaluate the following expressions:

1. 5 ** 2 >> 6 / 3

2. 2 ** 2 ** 3 / 4 + 3 * 2

3. 12 - 2 * 4 != 1 && 9 + 10 / 2 > 12

• Using the Rules 2 in Table 1, evaluate the following expressions:

4. 3 * 2 + 4 << 3 << 1

5. 2 * 4 + 9 < 20 || 45 / 5 + 4 != 5

6. 5 * 3 ** 2 + 5 > 6 ** 3 >> 4 / 2

Operator
Rules 1 Rules 2 Type

Assoc. Prec. Assoc. Prec. Operands Results

** R 2 R 2 numeric numeric
* L 3 R 3 numeric numeric
/ L 3 R 3 numeric numeric
+ L 4 R 3 numeric numeric
- L 4 R 3 numeric numeric
>> L 5 R 4 numeric numeric
<< L 5 R 4 numeric numeric
> L 6 L 5 numeric boolean
< L 6 L 5 numeric boolean
!= L 7 L 6 numeric boolean
&& L 8 L 7 boolean boolean
|| L 8 L 7 boolean boolean

Table 1: Two sets of rules for precedence and associativity. A lower number in the “Prec.” column means higher
precedence. The “Assoc.” column indicates whether the operator is left-associative (“L”) or right-associative
(“R”).

Note: The meaning of individual operators is the same as in Java. Additionally, ’**’ represents the exponential
(power) operation (e.g., 2 ** 3 is 8). To indicate the result of evaluating an expression, use the syntax specified
by Java literals (e.g., the number five is 5 and the Boolean values are true and false). Furthermore, all literals
are integer and as such consider integer division.

Evaluation Criteria: Your solution will be compared against the correct result of evaluating each expression
under each set of rules.

2 Task 2 (20% of total points of the exercise)

This task is to implement a ”true” iterator, i.e., a generator, in Python. You are given a Python class that imple-
ments a tree, where each node stores a list of strings. Your task is to implement the iterate strings in all nodes()

method of the Tree class to iterate through all strings in all nodes of the tree. The order of iteration is up to you.

Note: The assignment should be implemented in Python (version >= 3.8). Submissions that do not comply
with the exact folder structure and names in Figure 1, or that do not work with Python (version >= 3.8),
cannot be graded.

Evaluation Criteria: Your code will be evaluated by checking the logic and results. We will run your Python
script in a fresh and new Python environment that contains only standard Python packages. We do not permit
the installation of new packages, therefore make sure you do not use any dependencies that are not included
in the standard Python library.

2

3 Task 3 (55% of total points of the exercise)

For this task, you have to implement three tail-recursive functions in Scala:

1. filterGreaterThanBase, which checks whether the integers in an array are greater than the base integer.

2. isDaffodil, which checks whether an integer is a narcissistic integer.

3. countLetters, which counts how many times each letter occurs in a string.

The assignment should be implemented in Scala (version = 3.2.2). You can get Scala at https://www.

scala-lang.org/download/. You must implement the functions in such a way that they are tail-recursive, as
described in the lecture. As a brief recap, a function is tail-recursive when it calls itself as its last instruction, so
that the current stack frame can be reused for the next call.
Writing a tail-recursive function helps the compiler performing some optimizations, and Scala has a special
annotation @tailrec to tell the compiler that a function should be treated as a tail-recursive function. This
feature helps you detect errors early, since a function that is annotated as tail-recursive but cannot be recognized
as such by the compiler will raise a compile-time error.

3.1 Starting Point

You will find the template Scala project to use for this task in the /task 3 folder. The ’src’ folder contains
the only source files you must use for this task. Your solution must be entirely implemented following this
template, using the source file (Main.scala) and no other files. Please keep the names of the three functions
called in the source code unchanged. You are free to use the IDE of your choice.

Your task is to implement the function body of the three functions in Main.scala. You are allowed to use only
Scala standard libraries.

3.2 Testing

Examples of correct input-output pairs for the three functions:

Input Output

filterGreaterThanBase(Array(5, 21, 17, 4, 10, 15),

12, Array.empty[Int])
21, 17, 15

isDaffodil(200, 0) false

isDaffodil(153, 0) true

countLetters("aadabcbbbcc", Map.empty[Char, Int]) Map(a -> 3, d -> 1, b -> 4, c -> 3)

Use these input-output pairs to check whether your functions work as expected. We will use additional tests to
evaluate your solution, and you are advised to also use further tests for your own testing.

3.3 Evaluation Criteria

Your code will be evaluated against a held-out set of test cases that exercise your code. Submissions that do
not comply with the exact folder structure and names in Figure 1, or that do not work with Scala (version =
3.2.2), cannot be graded.

3

https://www.scala-lang.org/download/
https://www.scala-lang.org/download/

	Task I (25% of total points of the exercise)
	Task 2 (20% of total points of the exercise)
	Task 3 (55% of total points of the exercise)
	Starting Point
	Testing
	Evaluation Criteria

