
1

Analyzing Software using
Deep Learning

Robustness and Explainability

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023



2

Motivation

■ Neural models of code:
Hard to understand

□ Why do we get this prediction?

□ What properties of the code does the model

learn from?

□ Does slightly modifying the code lead to a

different prediction?

□ How to explain a prediction to a user?



3

Robustness

■ Want: Irrelevant changes should not
affect model’s predictions
□ Slightly modified identifier names

□ Semantically equivalent code

■ Lack of robustness causes
□ Surprising predictions → Unsatisfied users

□ Easy to circumvent models

• Important for vulnerability detection models



4

Explainability

■ Want: Understand what causes a
specific prediction
□ A.k.a. local explanations

□ Crucial for user acceptance

■ Want: Understand how the model
works in general
□ A.k.a. global explanations

□ Import to avoid coincidental accuracy

□ Helps improve future models



5

Overview

■ Robustness

■ Explaining specific predictions

■ Explaining entire models

Recommended papers:

■ “Adversarial Examples for Models of Code”, Yefet et al., 2020

■ “Counterfactual Explanations for Models of Code”, Cito et al., 2022

■ “Thinking Like a Developer? Comparing the Attention of Humans
with Neural Models of Code”, Paltenghi et al., 2021



6

Adversarial Examples

Neural models:
Vulnerable to adversarial examples

Explaining and harnessing adversarial examples, Goodfellow et al., 2014



7

Adversarial Code Examples

+ = ?



8

Kinds of Attacks

■ Given: Program p with correct label l

■ Non-targeted attack

□ Find “noise” to be added to p that yields a label

l′ ̸= l

■ Targeted attack

□ Find “noise” to be added to p that yields a

specific label ltarget ̸= l



9

Adding Noise

■ How to add noise to programs?

■ Semantics-preserving transformations

□ Rename variables

□ Insert dead code

□ Remove dead code

□ Re-order independent statements

□ Modify content of comments

□ etc.



10

Space of Program Variants

How to hit a specific target label?



11

Gradient-Based Exploration

■ Explore input space via
gradient-based exploration

■ Similar to model training, but

□ Model weights are fixed

□ Output is fixed to ltarget

□ Update the input vector of one variable name



12

Examples

Robustness of Code2vec:
(predicts names of methods)



13

Improving Robustness

■ Goal: Model is correct for all
label-preserving code transformations

■ Example: Type prediction

Following slides based on: “Adversarial Robustness for Code”, Bielik et al., 2020



14

Four Techniques

■ Abstain from making a prediction

■ Adversarial training

■ More robust representation learning

■ Train multiple specialized models



1



16 - 1

Adversarial Training

■ Label-preserving transformations

■ Optimization objective:
Minimize the maximum loss obtained
by any transformation



16 - 2

Adversarial Training

■ Label-preserving transformations

■ Optimization objective:
Minimize the maximum loss obtained
by any transformation



16 - 3

Adversarial Training

■ Label-preserving transformations

■ Optimization objective:
Minimize the maximum loss obtained
by any transformation



17

Multiple Specialized Models

■ Train multiple models

□ Each specializing on specific kinds of programs

■ Algorithm

□ Train model mi

□ Remove all data mi is successful on

□ Train another model mi+1

□ Repeat until overall accuracy high enough



18

Results

■ Applied to type prediction problem
■ Three models

□ LSTM on tokens

□ LSTM on sequentialized AST node

□ GNN

■ Large increase of robustness
□ E.g., +29% for GNN model

■ Minor decrease of accuracy
□ E.g., -1% for GNN model



19

Overview

■ Robustness

■ Explaining specific predictions

■ Explaining entire models

Recommended papers:

■ “Adversarial Examples for Models of Code”, Yefet et al., 2020

■ “Counterfactual Explanations for Models of Code”, Cito et al., 2022

■ “Thinking Like a Developer? Comparing the Attention of Humans
with Neural Models of Code”, Paltenghi et al., 2021



20 - 1

Counterfactual Explanations

Problem: Prediction alone
(even if correct) may not
convince developers



20 - 2

Counterfactual Explanations

Problem: Prediction alone
(even if correct) may not
convince developers

Instead: Show
alternative input that
changes the prediction



21

Goals

■ Based on feedback by software
engineers at Meta

□ Plausability: Does the counterfactual look like

natural code?

□ Actionability: Does the explanation show a

potential fix?

□ Consistency: Are changed applied consistently

across the entire program?



22

Importance of Plausability

■ Counterfactual must be plausible
(or natural)

■ Otherwise:

□ Model’s prediction may be unreliable (because

out-of-distribution)

□ Developers don’t believe the explanation

□ Developers don’t care about the explanation



23

Pertubation via MLM (Masked Language Model)

■ Replace a token with [MASK]

■ Ask a language model to predict likely
replacements for [MASK]

■ If a likely replacement changes the
prediction: Found counterfactual

■ Otherwise: Keep searching by
expanding promising replacements
with more tokens



24

Results

■ Applied to three tasks
□ Predict performance regressions

□ Predict whether a test plan needs a screenshot

□ Predict whether a commit introduces a taint

flow

■ Feedback from software engineers
□ 83% of explanations are useful

□ Explanations help in discerning true/false

positive predictions with 87% accuracy



25

Overview

■ Robustness

■ Explaining specific predictions

■ Explaining entire models

Recommended papers:

■ “Adversarial Examples for Models of Code”, Yefet et al., 2020

■ “Counterfactual Explanations for Models of Code”, Cito et al., 2022

■ “Thinking Like a Developer? Comparing the Attention of Humans
with Neural Models of Code”, Paltenghi et al., 2021



26

Developers vs. Neural Models

Do neural models reason about code
similarly to human developers?

■ If yes: Good news

■ If no: Should mimic developers more closely



27

Idea: Compare Humans & Models

■ Same task

■ Same code examples

■ Measure attention and
effectiveness

vs.
Machine
Learning

Neural models of codeDevelopers



28

Task: Code Summarization

{
if (!prepared(state)) {
return state.setStatus(MovementStatus.PREPPING);

} else if (state.getStatus() == MovementStatus.PREPPING) {
state.setStatus(MovementStatus.WAITING);

}
if (state.getStatus() == MovementStatus.WAITING) {
state.setStatus(MovementStatus.RUNNING);

}
return state;

}

Input: Method body
updateState
Output: Method name

* A Convolutional Attention Network for Extreme Summarization of Source
Code, ICML’16

Dataset: 250 methods from 10 Java projects *



29

Capturing Human Attention

■ Goal: Track human attention while
performing the task

■ Approach: Unblurring-based web
interface

□ Initially, all code blurred

□ Moving mouse/cursor temporarily unblurs

tokens



30

Model Attention

■ Convolutional sequence-to-sequence
(CNN)
A Convolutional Attention Network for Extreme Summarization of

Source Code, ICML’16

■ Transformer-based,
sequence-to-sequence model
A Transformer-based Approach for Source Code Summarization,

ACL’20

■ Both models:
Regular attention and copy attention



31

Human-Model Agreement

Do developers and models focus on the
same tokens?

■ Given for each code example

□ Human attention vector h⃗

□ Model attention vector m⃗

■ Measure agreement between them

□ Spearman rank correlation:
cov(rg

h⃗
,rgm⃗)

σrg
h⃗
,σrgm⃗



32 - 1

Results: Agreement

Human-human agreement:

Developers mostly agree on what code
matters most



32 - 2

Results: Agreement

Human vs. copy attention:

Empirical justification for copy attention



32 - 3

Results: Agreement

Humans vs. regular attention:

Lots of room for improvement!



33

Tokens to Focus On

What kind of tokens to focus on?

■ Different kinds: Identifiers, separators, etc.

■ For each kind, compute distance from uniformity

□ = 0 means uniform attention

□ −1 means no attention at all

□ > 0 means more than uniform attention



34 - 1

Results: Tokens to Focus on

Distance from uniformity:



34 - 2

Results: Tokens to Focus on

Distance from uniformity:

Identifiers
are deemed
important



34 - 3

Results: Tokens to Focus on

Distance from uniformity:

Models
mostly
ignore
some kinds
of tokens



34 - 4

Results: Tokens to Focus on

Example from Transformer model:



34 - 5

Results: Tokens to Focus on

Example from Transformer model:

Model “wastes” attention
on understanding syntax



34 - 6

Results: Tokens to Focus on

Example from Transformer model:

Model ignores tokens
important to developers



35

Effectiveness

Comparing developers and models w.r.t.
their effectiveness at solving the task

■ Strengths and weaknesses?

■ Can current models compete with developers?



36

Results: Effectiveness

Models underperform on
non-trivial methods

Comparing different kinds of methods:



37

Effectiveness vs. Agreement

Are models more effective when they
agree more with developers?



38

Results: Effectiveness vs. Agreement

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

More human-like predictions
are more accurate



39

Implications

■ Direct human-model comparison

□ Helps understand why models (do not) work

■ Should create models that mimic
humans

□ Use human attention during training

□ Design models that address current

weaknesses

• E.g., understanding string literals



40

Overview

■ Robustness

■ Explaining specific predictions

■ Explaining entire models

Recommended papers:

■ “Adversarial Examples for Models of Code”, Yefet et al., 2020

■ “Counterfactual Explanations for Models of Code”, Cito et al., 2022

■ “Thinking Like a Developer? Comparing the Attention of Humans
with Neural Models of Code”, Paltenghi et al., 2021

✔


