Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2023

Motivation

= Neural models of code:
Hard to understand

o Why do we get this prediction?

o What properties of the code does the model
learn from?

0 Does slightly modifying the code lead to a
different prediction?

o How to explain a prediction to a user?

Robustnhess

= Want: Irrelevant changes should not
affect model’s predictions

0 Slightly modified identifier names
0 Semantically equivalent code
= Lack of robustness causes
0 Surprising predictions — Unsatisfied users
o Easy to circumvent models

« Important for vulnerability detection models

Explainability

s Want: Understand what causes a
specific prediction
0 A.k.a. local explanations

o Crucial for user acceptance

= Want: Understand how the model
works In general

0 A.k.a. global explanations

o Import to avoid coincidental accuracy

0 Helps improve future models

Overview

= Robustness <——
= Explaining specific predictions
= Explaining entire models

Recommended papers:
m “‘Adversarial Examples for Models of Code”, Yefet et al., 2020
m “Counterfactual Explanations for Models of Code”, Cito et al., 2022

m “Thinking Like a Developer? Comparing the Attention of Humans
with Neural Models of Code”, Paltenghi et al., 2021

Adversarial Examples

Neural models:
Vulnerable to adversarial examples

v sign(VaJ(0,2,9)) esign(V,J (0,2, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and harnessing adversarial examples, Goodfellow et al., 2014

Adversarial Code Examples

void fl(int[] array) {
boolean swapped true;
for (int 1 = 0;
i < array.length && swapped;
swapped false;
for (int j = 0;
j < array.length-1-1i;
if (array/(j]
int temp = arrayljl;
arrayl[j] = arrayl[j+1];
array|[j+l]= temp;
swapped true;

Jj++) |
> array([j+1])

144) {

{

Prediction: sort (98.54%)

Kinds of Attacks

= Given: Program p with correct label |
= Non-targeted attack
o Find “noise” to be added to p that yields a label
I #1
s Targeted attack

0 Find “noise” to be added to p that yields a
specific label l;4rger # 1

Adding Noise

= How to add noise to programs?
» Semantics-preserving transformations
1 Rename variables
0 Insert dead code
1 Remove dead code
o Re-order independent statements
o Modify content of comments

0 etc.

Space of Program Variants

How to hit a specific target label?

Label: sort Label: sort Label: bubble sort

\

void sort(..){ \y " void sort(..){ " void sort(.){ |

int index;

» 1int j;

int arr; |<

/j ‘\ /.
/ | 4 ._
[void sort(.){ |

2)

@& Y V4 2
void sort(..){ . ' void sort(..){
int sum;
int found; - int brr;

) \ }

- _ 4 Label: sort N .

Label: indexOf Label: sort

10

Gradient-Based Exploration

s EXxplore input space via
gradient-based exploration

= Similar to model training, but
o Model weights are fixed
O OUtpUt IS fixed to Ztarget

o Update the input vector of one variable name

11

Examples

Robustness of Code2vec:
(predicts names of methods)

boolean f(Object target) { boolean f(Object mist) {
for (Object elem: this.elements) { for (Object upperhexdigits: this.elements) {
if (elem.equals(target)) { if (upperhexdigits.equals(mist)) {
return true; return true;
} ¥
¥ }
return false; return false;
} T DD
contains escape
boolean f(Object target) { boolean f(Object mist) {
for (Object musicservice: this.elements) { for (Object elem: this.elements) {
if (musicservice.equals(target)) { if (elem.equals(mist)) {
GEEED, The; return true;
: }
’ }
return false;
1 return false;

¥

Improving Robustness

= Goal: Model is correct for all
label-preserving code transformations

= Example: Type prediction

vl = parseInt™™"(
hex®t . substrft(1),

v = parselInt(
hex.substr(l),

radix radixum
v = parselnt(v = parselnt(v = parselnt(parseInt(
color.substr(1), hex.substr(42), hex. substr(1), hex.substr(1),
radix radix radix + @ radix
))))
variable renaming constant replacement semantic equivalence remove assignment 1 3

Following slides based on: “Adversarial Robustness for Code”, Bielik et al., 2020

Four Techniques

= Abstain from making a prediction
= Adversarial training
s More robust representation learning

= [rain multiple specialized models

14

New “dont kuow " lass
5 Tledd s {*"“’»A (ith conctant | swald \oss)
"\’“ (_kﬂ/ww{_) u\c)(q QKW\,-[)LL - S\W\'\(f‘ ‘)ncl.‘c.ko,_, ?(Sb\gm

Adversarial Training

= Label-preserving transformations

Constants, Binary Operators, ...

7 X+0 42

.
radix + offset radix - offset

16 -

1

Adversarial Training

= Label-preserving transformations

Constants, Binary Operators, ...
Rename Variables, Parameters, Fields, Method Names, ...

I

rac def getiD() {...} def get_id() {...}
client.Name client.name

X+0d

16 -

Adversarial Training

= Label-preserving transformations

Constants, Binary Operators, ...
Rename Variables, Parameters, Fields, Method Names, ...

7 Adding Dead Code, Reordering Statements, ...
rac def ge
client a = get id() X+ 0 b = 42
b = 42 a = get id()

= Optimization objective:
Minimize the maximum loss obtained
by any transformation

16 -

Multiple Specialized Models

= Train multiple models

0o Each specializing on specific kinds of programs
= Algorithm

o Train model m;

o Remove all data m; is successful on

o Train another model m; 4

o Repeat until overall accuracy high enough

17

Results

= Applied to type prediction problem
= Three models
0 LSTM on tokens
0 LSTM on sequentialized AST node
1 GNN
= Large increase of robustness
0 E.g., +29% for GNN model
= Minor decrease of accuracy
0 E.g., -1% for GNN model

18

Overview

= Robustness
= Explaining specific predictions <«—
= Explaining entire models

Recommended papers:

m “‘Adversarial Examples for Models of Code”, Yefet et al., 2020
m “Counterfactual Explanations for Models of Code”, Cito et al., 2022

m “Thinking Like a Developer? Comparing the Attention of Humans

with Neural Models of Code”, Paltenghi et al., 2021
19

Counterfactual Explanations

”Alert: Performance regression!”

private async function storeAndDisplayDialog(
SomeContext $vc,

SomeContent $content,

): Awaitable<SomethingStoreHandle> {

return $store_handle;

+): Awaitable<SomeUIElement> {

= $store_handle = await SomethingStore::genStoreHandle($vc);
+ $store_handle = await SomethingStore::genHandle($vc);

+ . other code ...

+ $store_success = await $store_handle->store(

+ $store_handle,

+ $content,

+);

+

}

Problem: Prediction alone
(even if correct) may not

convince developers o0

Counterfactual Explanations

"Alert: Perfor

- $store_handle = await SomethingStore::genStoreHandle($vc);
+ $store_handle = await

private async function storeA

SomeContext $vc,

SomeContent $content,

-): Awaitable<SomethingSto

+): Awaitable<SomeUIElemen
$store_handle = await So
$store_handle = await So

SomethingStore: :genSimple($vc)
+ ... other code ...

R R “If you had called genSimple
D bt instead of genHandle, your
2 urn sstore_handle. code would not be classified
S as causing a performance
regression”

Problem: Prediction alone Instead: Show
(even if correct) may not alternative input that
convince developers changes the prediction

Goals

= Based on feedback by software
engineers at Meta

o Plausability: Does the counterfactual look like

natural code?

o Actionability: Does the explanation show a
potential fix?

0 Consistency: Are changed applied consistently
across the entire program?

21

Importance of Plausability

= Counterfactual must be plausible
(or natural)

s Otherwise:

o Model's prediction may be unreliable (because
out-of-distribution)

o Developers don’t believe the explanation

o Developers don’t care about the explanation

22

Pertubation via MLIM ...c: s

= Replace a token with [MASK]

= Ask a language model to predict likely
replacements for [MASK]

= If a likely replacement changes the
prediction: Found counterfactual

s Otherwise: Keep searching by
expanding promising replacements
with more tokens

23

Results

= Applied to three tasks
o Predict performance regressions
o Predict whether a test plan needs a screenshot

o Predict whether a commit introduces a taint
flow

= Feedback from software engineers
0 83% of explanations are useful

0 Explanations help in discerning true/false
positive predictions with 87% accuracy

24

Overview

= Robustness
= Explaining specific predictions
= Explaining entire models <«——

Recommended papers:

m “‘Adversarial Examples for Models of Code”, Yefet et al., 2020
m “Counterfactual Explanations for Models of Code”, Cito et al., 2022

m “Thinking Like a Developer? Comparing the Attention of Humans

with Neural Models of Code”, Paltenghi et al., 2021
25

Developers vs. Neural Models

Do neural models reason about code
similarly to human developers?

m If yes: Good news

m If no: Should mimic developers more closely

26

ldea: Compare Humans & Models

e O
: Machine
VS. REETGle
Developers Neural models of code
= Same task

= Same code examples

s Measure attention and
effectiveness

27

Task: Code Summarization

{
if (!prepared(state)) ({
return state.setStatus (MovementStatus.PREPPING) ;
} else if (state.getStatus() == MovementStatus.PREPPING) {
state.setStatus (MovementStatus.WAITING) ;

}
if (state.getStatus() == MovementStatus.WAITING) ({

state.setStatus (MovementStatus.RUNNING) ;
}

return state;

}

Input: Method body —» Output: Method name
updateState

Dataset: 250 methods from 10 Java projects *

* A Convolutional Attention Network for Extreme Summarization of Source
Code, ICML16 28

Capturing Human Attention

s Goal: Track human attention while
performing the task

= Approach: Unblurring-based web
interface

o Initially, all code blurred

1 Moving mouse/cursor temporarily unblurs
tokens

29

Model Attention

= Convolutional sequence-to-sequence
(CNN)

A Convolutional Attention Network for Extreme Summarization of
Source Code, ICML'16

= [ransformer-based,
sequence-to-sequence model

A Transformer-based Approach for Source Code Summarization,
ACL20

= Both models:
Regular attention and copy attention

30

Human-Model Agreement

Do developers and models focus on the
same tokens?

m Given for each code example
1 Human attention vector A
0 Model attention vector m

m Measure agreement between them

cov(’rgﬁ Tg,7)

O'rgFL Org -

0 Spearman rank correlation:

31

Results: Agreement

Human-human agreement:

2 2007 ——- Mean 0.59 "
S —— Median 0.62 ;I_|_ ﬂ

0 r e —— .
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Spearman Rank Coefficient - Human vs Human

Developers mostly agree on what code
matters most

32 - 1

Results: Agreement

Human vs. copy attention:

‘g’ 501 —=- Mean 0.49
S — Median 0.48
0 i 1 _I

—-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Coefficient - Human vs Copy - CNN

£ 501 --- Mean 0.47 [y

S —— Median 0.43 :

0' | ! i=' T II T
~1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Spearman Rank Coefficient - Human vs Copy - Transformer

Empirical justification for copy attention

32 -

Results: Agreement

Humans vs. regular attention:

‘g’ 204 --- Mean 0.08
S — Median 0.17
0 -
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Coefficient - Human vs Regular - CNN
£ ' - == Mean -0.20
3 50 - ,
S m —h — Median -0.28
0 |==,|—|—l ; =_=|:|:E|:|_

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Coefficient - Human vs Reqgular - Transformer

Lots of room for improvement!

32 -

Tokens to Focus On

What kind of tokens to focus on?

m Different kinds: Identifiers, separators, etc.

m For each kind, compute distance from uniformity
0 = 0 means uniform attention
0 —1 means no attention at all

0 > 0 means more than uniform attention

33

Results: Tokens to Focus on

Distance from uniformity:

Il Regular - CNN B Regular - Transformer W@ Human

Token Category

i Copy - CNN

B Copy - Transformer

Identifi i __-
entifier _—_
S t -
. S -
TP e—————
K d - = —=..
eywor -_—
|]
| e
O eratOr -
S ——
=
String |~ R
| —
soolean 1
_—
-1 0 +0.5 +1 +1.5

(No attention)

(Uniform attention) (More than uniform)
Distance from Uniformity

34 - 1

Results: Tokens to Focus on

Distance from uniformity:

Token Category

Il Regular - CNN

i Copy - CNN

B Copy - Transformer

entitier _—_
S t :
- S
TP e—————
K d - —=-
eywor -_—
=
O eratOr -
C —
=
String |~ R
I
-
Booleanl =

-1
(No attention)

0 +0.5 +1
(Uniform attention) (More than uniform)
Distance from Uniformity

B Regular - Transformer @@ Human

«— ldentifiers
are deemed
important

+1.5

34 -

Results: Tokens to Focus on

Distance from uniformity:

Token Category

Il Regular - CNN

i Copy - CNN

B Copy - Transformer

entifier _—_
. S -
TP e—————
K d - = —=..
eywor -_—
|]
O eratOr -
S ——
e
String 1= — -
| e—
-
Booleanl =

-1
(No attention)

0 +0.5 +1 +1.5
(Uniform attention) (More than uniform)

Distance from Uniformity

B Regular - Transformer @@ Human

Models
mostly

<«———— Ignore

some kinds
of tokens

34 -

Results: Tokens to Focus on

Example from Transformer model:

loglldebugli"Requesting new token");
int status = gethtpCllentI}IexecuteMethod!hethod)
3F Wstatus != 200)

{

}

document document = new saxBuilderfifalse)lbuildlfimethodlfigetResponseBodyAsStreanll))BgetDocumentl);
xPath path = xPathfinewInstance#"/response/token");

element result = [flelement)pathfiiselectSingleNodefldocument);

throw new exceptionfi"Error logging in: " + methodBlgetStatusLinelll));

8f Wresult == null)
{
element error = [lelement)xPathfinewInstancel]"/response/error")lselectSingleNodell
document) ;
throw new exceptionfferror == null ? "Error logging in" : errorfigetTextl));

}
; Myloken = resul.getlestieintl; Regular attention of neural model

{

log.debug (fRequesting new token')) ;

int status = getHttpClient () .executeMethod (method) ;
if (status != 200)

{

}

throw new exception/(fError logging in: "] ¥ method.getStatusLine());

document document = new saxBuilder (false) .build(method.getResponseBodyAsStream()) .getDocument();
xPath path = xPath.newInstance (/response/token")) ;
Element] fesult] H [(element) path.selectfingleNode|(document) ;
if (result == null)
{

element error = (element)xPath.newInstance ("/response/error").selectSingleNode (

document) ;
throw new exception(error == null ? "Error logging in" : error.getText());

}
toker] H EEEnTaEetrextirin() ; Human attention

Results: Tokens to Focus on

Example from Transformer model:

= {

loglidebugli"Requesting new token"); -
int status = getHttpClientl) BexecuteMethodiimethod) ;
af Mlstatus != 200)
{

throw new exceptionfi"Error logging in: " + met. ,dligetStatusLinelll));
}
document document = new saxBuilderffifalse)buildfimet. . odficetResponseBodyAsStreanll)) lgetDocumentll) ;
xPath path = xPathfinewInstancel"/response/token");
element result = [felement)path.selectSingleNodeffdociment);
B fresult == null)
{ - . .

element error = [element)xPathfnewInstancel|"/res onse/error")lselectSingleNodell

document) ;

throw new exceptionfferror == null ? "Error loggirg in" : errorfigetTextl));

} .
| mYho .o - result.getTextTrin(); ular attention of neural model

log.debug(FRequestinq new tosx.._"™M: :
i?t(ztiiﬁz T:ggggftpClient().executbgf*hod(me ” I .
{ Model “wastes” attention
}

document document = new saxBuilder (false) .bui L
S = on understanding syntax

throw new exception (FError logging in: "]

if (result == null)
{
element error = (element)xPath.newInstance ("/response/error").selectSingleNode (
document) ;
throw new exception(error == null ? "Error logging in" : error.getText());

}
froker H EESEmEstrextrin () ; Human attention

Results: Tokens to Focus on

Example from Transformer model:

logiidebuglf"Requesting new token");

int status = getHttpClientff]) BexecuteMethodiimethod) ;
af Mistatus != 200)

{

}

document document = new saxBuilderffifals gbuildlifmethodiigetResponseBodyAsStreanlf))flgetDocumentl) ;
xPath path = xPathfinewInstancel"/response ‘token");

element result = flelement)pathfiselectSingl sNodefldocument) ;

B fresult == null)

{

throw new exceptionfi"Error logging in: " + methodligetStatusLinelfl));

element error = [flelement)xPathfnewInstanc :J|"/response/error")fselectSingleNodelf
document) ;
throw new exceptionfferror == null ? "Error

k|

}

myToken = result.getTextTrim(); MOdeI ignores t0kens

T ~ DY u
S e Important to developers
if [{status = 200
{

throw new exception/(fError logging in: "] ¥ method.getStatusLine());

}

document document = new saxBuilder (false) .build(method.getResponseBodyAsStream()) .getDocument();
xPath path = xPath.newInstance (|"/response/token"]);
Element] fesult] H (element)path.EelectEinglEﬁoda(document);
if (result == null)
{

element error = (element)xPath.newInstance ("/response/error").selectSingleNode (

document) ;
throw new exception(error == null ? "Error logging in" : error.getText());

}
vfToken H EEsuiffgetiexticin() ;

Effectiveness

Comparing developers and models w.r.t.
their effectiveness at solving the task

m Strengths and weaknesses?
m Can current models compete with developers?

35

Results: Effectiveness

Comparing different kinds of methods:

B Relaxing to pseudo-correct

CNN Transformer Humans
1.0 1.0 1.0 A
4
0.8 0.8 g 0.8 A
(73]
Q (] (]
5 0.6 5 0.6 “ 0.6 1
&) (@]
¢ Q g
= 0.4 - T 0.4 A T 0.4 -

—
c

et
o 0.2 1

(a

o
N
o
N

0.0 -

o
o
l
©
o
|

LLLLL
mmmmm

HHH
+—
HHH

Models underperform on
non-trivial methods

Effectiveness vs. Agreement

Are models more effective when they
agree more with developers?

37

Results: Effectiveness vs. Agreement

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.
All Methods with

methods F1>0.5

CNN (regular) 0.08 0.24

CNN (copy) 0.49 0.55

Transformer (reg.) -0.20 0.02

Transformer (copy) 0.47 0.55
\ —

R ———

More human-like predictions
are more accurate %8

Implications

s Direct human-model comparison
o Helps understand why models (do not) work

s Should create models that mimic
humans

o Use human attention during training

o Design models that address current
weaknesses

« E.g., understanding string literals

39

Overview

= Robustness
= Explaining specific predictions
» Explaining entire models v 4

Recommended papers:

m “‘Adversarial Examples for Models of Code”, Yefet et al., 2020
m “Counterfactual Explanations for Models of Code”, Cito et al., 2022

m “Thinking Like a Developer? Comparing the Attention of Humans

with Neural Models of Code”, Paltenghi et al., 2021
40

