
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

Programming Paradigms

Functional Languages



2

Overview

� Introduction

� A Bit of Scheme

� Evaluation Order



3 - 1

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((foo 4))
(let ((foo 2)

(bar foo))
(+ foo bar)))



3 - 2

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((foo 4))
(let ((foo 2)

(bar foo))
(+ foo bar)))

Result: 6



3 - 3

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((foo 4))
(let ((foo 2)

(bar foo))
(+ foo bar)))

Result: 6

let binds names
to values



3 - 4

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((foo 4))
(let ((foo 2)

(bar foo))
(+ foo bar)))

Result: 6

let binds names
to values

Scope of bindings:
Second argument only



3 - 5

Wake-up Quiz

What does the following Scheme code
evaluate to?

(let ((foo 4))
(let ((foo 2)

(bar foo))
(+ foo bar)))

Result: 6

let binds names
to values

Scope of bindings:
Second argument only

bar takes the
value of the outer
foo



4

Functional Languages

� Functional paradigm: Alternative to
imperative PLs
� Output: Mathematical function of input

� No internal state, no side effects

� In practice: Fuzzy boundaries
� “Functional” features in many “imperative” PLs

• E.g., higher-order functions

� “Imperative features” in many “functional” PLs

• E.g., assignment and iteration



5

Historical Origins

� Lambda calculus

� Alonzo Church, 1930s

� Express computation based on

� Abstraction into functions

• E.g., (λx.M)

� Function application

• E.g., (M N)



6 - 1

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection



6 - 2

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection

Functions assigned
to variables, passed
as arguments, or
return values



6 - 3

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection

Use a function on
different kinds of
values, e.g., using
type inference



6 - 4

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection

Ideal for recursion
(handle first
element and then
recursively the
remainder)



6 - 5

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection

Functions can
return any
structured data,
e.g., lists and
functions



6 - 6

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection Construct aggregate
objects inline and
all-at-once



6 - 7

Features

� First-class function values and
higher-order function

� Extensive polymorphism

� List types and operators

� Structured function returns

� Constructors for structured objects

� Garbage collection Necessary because
evaluation tends to create
lots of temporary data



7

Purely Functional PLs

� Functions depend only on their
parameters

� Not on any other global or local state

� Order of evaluation is irrelevant

• Eager and lazy evaluation yield same result

� E.g., Haskell

� By Philip Wadler et al., first released in 1990

� Actively used as a research language



8

Non-Pure Functional PLs

� Mix of functional features with
assignments

� E.g., Scheme

� Dialect of Lisp

� By Guy Steele and Gerlad Jay Sussman (MIT)

� E.g., OCaml

� Extends ML with OO features

� Developed at INRIA (France)



9

Overview

� Introduction

� A Bit of Scheme

� Evaluation Order



10 - 1

Function Application

� Pair of parentheses: Function
application

� First expression inside: Function

� Remaining expressions: Arguments

� Examples:

(+ 3 4) ((+ 3 4))



10 - 2

Function Application

� Pair of parentheses: Function
application

� First expression inside: Function

� Remaining expressions: Arguments

� Examples:

(+ 3 4) ((+ 3 4))

Applies + function
to 3 and 4.
Evaluates to 7.



10 - 3

Function Application

� Pair of parentheses: Function
application

� First expression inside: Function

� Remaining expressions: Arguments

� Examples:

(+ 3 4) ((+ 3 4))

Applies + function
to 3 and 4.
Evaluates to 7.

Tries to call 7 with zero
arguments.
Gives runtime error.



11 - 1

Creating Functions

� Evaluating a lambda expression yields
a function

� First argument to lambda: Formal parameters

� Remaining arguments: Body of the function

� Example:

(lambda (x) (* x x))



11 - 2

Creating Functions

� Evaluating a lambda expression yields
a function

� First argument to lambda: Formal parameters

� Remaining arguments: Body of the function

� Example:

(lambda (x) (* x x))

Yields the “square” function



12 - 1

Bindings

� Names bound to values with let

� First argument: List of name-value pairs

� Second argument: Expressions to be evaluated

in order

� Example:
(let ((a 3)

(b 4)
(square (lambda (x) (* x x)))
(plus +))

(sqrt (plus (square a) (square b))))



12 - 2

Bindings

� Names bound to values with let

� First argument: List of name-value pairs

� Second argument: Expressions to be evaluated

in order

� Example:
(let ((a 3)

(b 4)
(square (lambda (x) (* x x)))
(plus +))

(sqrt (plus (square a) (square b))))

Yields 5.0



13 - 1

Conditional Expressions

� Simple conditional expression with if

� First argument: Condition

� Second/third argument: Value returned if

condition is true/false

� Multiway conditional expression with
cond

� Examples:
(if (< 2 3) 4 5)

(cond
((< 3 2) 1)
((< 4 3) 2)
(else 3))



13 - 2

Conditional Expressions

� Simple conditional expression with if

� First argument: Condition

� Second/third argument: Value returned if

condition is true/false

� Multiway conditional expression with
cond

� Examples:
(if (< 2 3) 4 5)

(cond
((< 3 2) 1)
((< 4 3) 2)
(else 3))Yields 4



13 - 3

Conditional Expressions

� Simple conditional expression with if

� First argument: Condition

� Second/third argument: Value returned if

condition is true/false

� Multiway conditional expression with
cond

� Examples:
(if (< 2 3) 4 5)

(cond
((< 3 2) 1)
((< 4 3) 2)
(else 3))Yields 4

Yields 3



14 - 1

Dynamic Typing

� Types are determined and checked at
runtime

� Examples:

(if (> a 0) (+ 2 3) (+ 2 "foo"))

(define min (lambda (a b) (if (< a b ) a b)))



14 - 2

Dynamic Typing

� Types are determined and checked at
runtime

� Examples:

(if (> a 0) (+ 2 3) (+ 2 "foo"))

(define min (lambda (a b) (if (< a b ) a b)))

Evaluates to 5 if a is positive;
runtime type error otherwise



14 - 3

Dynamic Typing

� Types are determined and checked at
runtime

� Examples:

(if (> a 0) (+ 2 3) (+ 2 "foo"))

(define min (lambda (a b) (if (< a b ) a b)))

Evaluates to 5 if a is positive;
runtime type error otherwise

Implicitly polymorphic:
Works both for integers and floats.



15 - 1

Quiz: Functions in Scheme

Which of the following yields 9?

; Program 1
((lambda (x) (* x x)) 3)

; Program 2
(- (+ 12 4) (+ 2 4))

; Program 3
(9)

; Program 4
((lambda (x y) (- x y)) (+ 10 0) (- 4 1))



15 - 2

Quiz: Functions in Scheme

Which of the following yields 9?

; Program 1
((lambda (x) (* x x)) 3)

; Program 2
(- (+ 12 4) (+ 2 4))

; Program 3
(9)

; Program 4
((lambda (x y) (- x y)) (+ 10 0) (- 4 1))

4

8

8

8



16 - 1

Lists

� Central data structure with various
operations

� car extracts first element

� cdr extracts all elements but first

� cons joins a head to the rest of a list

� Examples:
(car ’(2 3 4)) (cdr ’(2 3 4)) (cons 2 ’(3 4))



16 - 2

Lists

� Central data structure with various
operations

� car extracts first element

� cdr extracts all elements but first

� cons joins a head to the rest of a list

� Examples:
(car ’(2 3 4)) (cdr ’(2 3 4)) (cons 2 ’(3 4))

”Quote” to
prevent
interpreter
from
evaluating
(i.e., a literal)



16 - 3

Lists

� Central data structure with various
operations

� car extracts first element

� cdr extracts all elements but first

� cons joins a head to the rest of a list

� Examples:
(car ’(2 3 4)) (cdr ’(2 3 4)) (cons 2 ’(3 4))

Yields 2

”Quote” to
prevent
interpreter
from
evaluating
(i.e., a literal)



16 - 4

Lists

� Central data structure with various
operations

� car extracts first element

� cdr extracts all elements but first

� cons joins a head to the rest of a list

� Examples:
(car ’(2 3 4)) (cdr ’(2 3 4)) (cons 2 ’(3 4))

Yields 2 Yields (3 4)

”Quote” to
prevent
interpreter
from
evaluating
(i.e., a literal)



16 - 5

Lists

� Central data structure with various
operations

� car extracts first element

� cdr extracts all elements but first

� cons joins a head to the rest of a list

� Examples:
(car ’(2 3 4)) (cdr ’(2 3 4)) (cons 2 ’(3 4))

Yields 2 Yields (3 4) Yields (2 3 4)

”Quote” to
prevent
interpreter
from
evaluating
(i.e., a literal)



17 - 1

Assignments

� Side effects via

� set! for assignment to variables

� set-car! for assigning head of list

� set-cdr! for assigning tail of list

� Example: (let ((x 2)
(l ’(a b)))

(set! x 3)
(set-car! l ’(c d))
(set-cdr! l ’(e))
(cons x l))



17 - 2

Assignments

� Side effects via

� set! for assignment to variables

� set-car! for assigning head of list

� set-cdr! for assigning tail of list

� Example: (let ((x 2)
(l ’(a b)))

(set! x 3)
(set-car! l ’(c d))
(set-cdr! l ’(e))
(cons x l))

Yields (3 (c d) e)



74



18 - 1

Sequencing

� Cause interpreter to evaluate multiple
expressions one after another with
begin

� Example:
(let

((n "there"))
(begin
(display "hi ")
(display n)))



18 - 2

Sequencing

� Cause interpreter to evaluate multiple
expressions one after another with
begin

� Example:
(let

((n "there"))
(begin
(display "hi ")
(display n))) Prints ”hi there”



19 - 1

Iteration

� Several forms of loops, e.g., with do

� Example:

((lambda (n)
(do ((i 0 (+ i 1))

(a 0 b)
(b 1 (+ a b)))

((= i n) b)
(display b)
(display " "))) 5)



19 - 2

Iteration

� Several forms of loops, e.g., with do

� Example:

((lambda (n)
(do ((i 0 (+ i 1))

(a 0 b)
(b 1 (+ a b)))

((= i n) b)
(display b)
(display " "))) 5)

List of triples that each
� specify a new variable

� its initial value

� expression to compute
next value



19 - 3

Iteration

� Several forms of loops, e.g., with do

� Example:

((lambda (n)
(do ((i 0 (+ i 1))

(a 0 b)
(b 1 (+ a b)))

((= i n) b)
(display b)
(display " "))) 5)

List of triples that each
� specify a new variable

� its initial value

� expression to compute
next valueTermination

condition and
expression to
be returned



19 - 4

Iteration

� Several forms of loops, e.g., with do

� Example:

((lambda (n)
(do ((i 0 (+ i 1))

(a 0 b)
(b 1 (+ a b)))

((= i n) b)
(display b)
(display " "))) 5)

List of triples that each
� specify a new variable

� its initial value

� expression to compute
next valueTermination

condition and
expression to
be returned

Body of
the loop



19 - 5

Iteration

� Several forms of loops, e.g., with do

� Example:

((lambda (n)
(do ((i 0 (+ i 1))

(a 0 b)
(b 1 (+ a b)))

((= i n) b)
(display b)
(display " "))) 5)

List of triples that each
� specify a new variable

� its initial value

� expression to compute
next valueTermination

condition and
expression to
be returned

Body of
the loop

Computes first n Fibonacci numbers



20 - 1

Programs as Lists

� Programs and lists: Same syntax

� Both are S-expressions: String of symbols with

balanced parentheses

� Construct and manipulate an
unevaluated program as a list

� Evaluate with eval

� Example:
(eval (cons ’+ (list ’2 ’3)))



20 - 2

Programs as Lists

� Programs and lists: Same syntax

� Both are S-expressions: String of symbols with

balanced parentheses

� Construct and manipulate an
unevaluated program as a list

� Evaluate with eval

� Example:
(eval (cons ’+ (list ’2 ’3)))

Constructs a list from
the given arguments



20 - 3

Programs as Lists

� Programs and lists: Same syntax

� Both are S-expressions: String of symbols with

balanced parentheses

� Construct and manipulate an
unevaluated program as a list

� Evaluate with eval

� Example:
(eval (cons ’+ (list ’2 ’3)))

Constructs a list from
the given arguments

Yields 5



21

Overview

� Introduction

� A Bit of Scheme

� Evaluation Order



22

Evaluation Order

� In what order to evaluate
subcomponents of an expression?

� Applicative-order: Evaluate arguments before

passing them to the function

� Normal-order: Pass arguments unevaluated

and evaluate once used

� Scheme uses applicative-order



75



76



25

Impact on Correctness

� Evaluation order also affects
correctness

� E.g., runtime error when evaluating an
”unneeded” subexpression

� Terminates program in applicative-order

� Not noticed in normal-order



26

Lazy Evaluation

� Evaluate subexpressions on-demand

� Avoid re-evaluating the same
expression

� Memorize its result

� Transparent to programmer only in PL
without side effects, e.g., Haskell
� In PLs with side effects, e.g., Scheme:

Programmer can explicitly ask for lazy

evaluation with delay



27 - 1

Quiz: Evaluation Order

(define double (lambda (x) (+ x x)))
(define avg (lambda (x y) (/(+ x y) 2)))

How many evaluation steps are needed to
evaluate
(double(avg 2 4))

under applicative-order and normal-order
evaluation?



27 - 2

Quiz: Evaluation Order

(define double (lambda (x) (+ x x)))
(define avg (lambda (x y) (/(+ x y) 2)))

How many evaluation steps are needed to
evaluate
(double(avg 2 4))

under applicative-order and normal-order
evaluation?

5 and 8



73



29

Overview

� Introduction

� A Bit of Scheme

� Evaluation Order 4


