
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

Programming Paradigms

Control Flow (Part 1)

2

Control Flow

Control flow: Ordering of instructions

� Fundamental to most models of computation

� Common language mechanisms

� Sequencing, selection, iteration, recursion,

concurrency, exceptions

� Each PL defines its rules

� Think in terms of concepts, not specific syntax

3 - 1

Quiz: Argument Evaluation

What does the following Java code print?

class ArgEval {
static void f(int a, int b) {

System.out.println(a + ", " + b);
}

public static void main(String[] args) {
int i = 7;
f(i++, --i);

}
}

3 - 2

Quiz: Argument Evaluation

What does the following Java code print?

class ArgEval {
static void f(int a, int b) {

System.out.println(a + ", " + b);
}

public static void main(String[] args) {
int i = 7;
f(i++, --i);

}
}

Result: 7, 7

3 - 3

Quiz: Argument Evaluation

What does the following Java code print?

class ArgEval {
static void f(int a, int b) {

System.out.println(a + ", " + b);
}

public static void main(String[] args) {
int i = 7;
f(i++, --i);

}
}

Result: 7, 7

Post-increment:
Returns i and then
increments it

3 - 4

Quiz: Argument Evaluation

What does the following Java code print?

class ArgEval {
static void f(int a, int b) {

System.out.println(a + ", " + b);
}

public static void main(String[] args) {
int i = 7;
f(i++, --i);

}
}

Result: 7, 7

Pre-decrement:
Decrements i and
then returns it

3 - 5

Quiz: Argument Evaluation

What does the following Java code print?

class ArgEval {
static void f(int a, int b) {

System.out.println(a + ", " + b);
}

public static void main(String[] args) {
int i = 7;
f(i++, --i);

}
}

Result: 7, 7

Evaluation order:
Left-to-right

4

Overview

� Expression Evaluation

� Structured and Unstructured
Control Flow

� Selection

� Iteration

� Recursion

5

Expressions

Operator vs. operand

� Operator: Built-in function with a simple syntax

� Operand: Arguments of operator

� Examples:

i++

foo() + 23

(a * b) / c

6 - 1

Expressions: Notation

Three popular notations

� Prefix

� op a b or op(a, b) or (op a b)

� Infix

� a op b

� Postfix

� a b op

6 - 2

Expressions: Notation

Three popular notations

� Prefix

� op a b or op(a, b) or (op a b)

� Infix

� a op b

� Postfix

� a b op

Example: Lisp
(* (+ 1 3) 2)

6 - 3

Expressions: Notation

Three popular notations

� Prefix

� op a b or op(a, b) or (op a b)

� Infix

� a op b

� Postfix

� a b op

Example: Java
(1 + 3) * 2

6 - 4

Expressions: Notation

Three popular notations

� Prefix

� op a b or op(a, b) or (op a b)

� Infix

� a op b

� Postfix

� a b op

Example: C
a++

7

Multiplicity

Number of arguments expected by an
operator

� Unary

� a++ or !cond

� Binary

� a + b or x instanceof MyClass

� Ternary

� cond ? a : b

� (More are possible, but uncommon in practice)

8

Order of Evaluating Expressions

Given a complex expression, in what
order to evaluate it?

Examples:

� Multiple arithmetic operations in Python:
2 + 3 * 4

� Mix of boolean and other expressions in Java:
!x && a == false

� Dereference and increment a pointer in C:

*p++

9

Precedence and Associativity

Choice among evaluation orders:

Specified by precedence and
associativity rules of the PL

� Precedence: Specify which operators group
“more tighly” than others

� Associativity: For operators of equal precedence,

specify whether to group to the left or right

10 - 1

Precedence Levels in C

Operator Meaning

++, -- Post-increment, post-decrement

++, -- Pre-increment, pre-decrement

* Pointer dereference

<, > Inequality test

==, != Equality test

&& Logical and

|| Logical or

=, += Assignment This list is
incomplete.

Higher
means
higher
precedence

10 - 2

Precedence Levels in C

Operator Meaning

++, -- Post-increment, post-decrement

++, -- Pre-increment, pre-decrement

* Pointer dereference

<, > Inequality test

==, != Equality test

&& Logical and

|| Logical or

=, += Assignment This list is
incomplete.

Same
precedence
level

11 - 1

Examples

� Dereference and increment a pointer:
� *p++

� Mix of logical operators:
� a && b || c

� Mix of inequality and equality tests:

� x < y == foo

11 - 2

Examples

� Dereference and increment a pointer:
� *p++ means *(p++)

� Mix of logical operators:
� a && b || c means (a && b) || c

� Mix of inequality and equality tests:

� x < y == foo means (x < y) == foo

11 - 3

Examples

� Dereference and increment a pointer:
� *p++ means *(p++)

� Mix of logical operators:
� a && b || c means (a && b) || c

� Mix of inequality and equality tests:

� x < y == foo means (x < y) == foo

General rule:
When in doubt, use parentheses

12

Associativity Rules

� Decide about same-level operators

� Arithmetic operators:

Mostly left-to-right a.k.a. left-associative

� 12 - 3 - 2 yields 7 in most languages

� Exception: Exponentiation is mostly right-associative

• 2 ** 3 ** 2 yields 512 in most languages

• But: 2 ˆˆ 3 ˆˆ 2 yields 64 in Excel

� Assignments: Mostly right-associative
� a = b = a + c assigns a + c into b and then a

13 - 1

Quiz: Precedence and Associativity

1) What are the values of foo and bar

(a) when assignments are left-associative?
(b) when assignments are right-associative?

2) What is the value of z
(a) when && has higher prededence than ||?
(b) when || has higher prededence than &&?

bool x = false, y = false, z = true;
bool z = x || y && y || z;

int foo = 2, bar = 3;
foo = bar = foo + bar;

13 - 2

Quiz: Precedence and Associativity

1) What are the values of foo and bar

(a) when assignments are left-associative?
(b) when assignments are right-associative?

2) What is the value of z
(a) when && has higher prededence than ||?
(b) when || has higher prededence than &&?

bool x = false, y = false, z = true;
bool z = x || y && y || z;

int foo = 2, bar = 3;
foo = bar = foo + bar;

foo=3, bar=6

foo=5, bar=5

true

false

14 - 1

Ordering within Expressions

� Discussed so far:
Order of performing operations

� But: In what order are the operands
evaluated?

� Example:
a - f(b) - c * d

14 - 2

Ordering within Expressions

� Discussed so far:
Order of performing operations

� But: In what order are the operands
evaluated?

� Example:
a - f(b) - c * d

Has precedence over
subtraction

14 - 3

Ordering within Expressions

� Discussed so far:
Order of performing operations

� But: In what order are the operands
evaluated?

� Example:
a - f(b) - c * d

Subtraction is left-associative:
This is computed first

14 - 4

Ordering within Expressions

� Discussed so far:
Order of performing operations

� But: In what order are the operands
evaluated?

� Example:
a - f(b) - c * d

But: Which of these two operands
is evaluated first?

15

Why Does It Matter?

� Reason 1: Side effects
� Evaluating f(b) may modify c or d

� Reason 2: Compiler optimizations
� Influences register allocation and instruction

scheduling

Example:
a - f(b) - c * d

16 - 1

Ordering: Language-specific

Different PLs: Different ordering within
expressions

� Java and C#: Left-to-right

� C and many other languages: Undefined

� Compiler can choose best order

� Earlier example again:

int i = 7;

f(i++, --i);

16 - 2

Ordering: Language-specific

Different PLs: Different ordering within
expressions

� Java and C#: Left-to-right

� C and many other languages: Undefined

� Compiler can choose best order

� Earlier example again:

int i = 7;

f(i++, --i);

May pass 7, 7 (left-to-right)
or 6, 6 (right-to-left) to f

17 - 1

Short-circuit Evaluation

� Saving time when evaluating boolean
expressions

� Example:

if (very_unlikely && very_expensive())
{

...
}

17 - 2

Short-circuit Evaluation

� Saving time when evaluating boolean
expressions

� Example:

if (very_unlikely && very_expensive())
{

...
}

If first operand is false,
no need to evaluate the
second

17 - 3

Short-circuit Evaluation

� Saving time when evaluating boolean
expressions

� Example:

if (very_unlikely && very_expensive())
{

...
} But: Side effects of

second operand may
or may not happen

18

Short-circuit Evaluation (2)

� Most PLs implement short-circuit
evaluation

� Boolean and: Ignore second operand if first is

false

� Boolean or: Ignore second operand if first is
true

� One (relatively) popular exception:
Pascal

19

Short-circuit Evaluation (3)

� Beware that side effects in some
boolean expressions may not happen

� Use it to your advantage:

// C code
p = my_list;
while (p && p->key != val) {

...
p = p ->next;

}

20

Overview

� Expression Evaluation

� Structured and Unstructured
Control Flow

� Selection

� Iteration

� Recursion

21

Control Flow with gotos

� Most assembly languages:
Control flow via conditional and
unconditional jumps

� Early PLs: goto statements

� Jump to a statement label

� Target label can be anywhere in the code

22 - 1

Example

// C code
int a = 10;
my_label: do {

if(a == 12) {
a = a + 1;
goto my_label;

}
printf("%d\n", a);
a++;

} while(a < 15);

22 - 2

Example

// C code
int a = 10;
my_label: do {

if(a == 12) {
a = a + 1;
goto my_label;

}
printf("%d\n", a);
a++;

} while(a < 15);

Output:
10
11
13
14

23 - 1

Quiz: Goto Hell
// C code
int result = 0;
int bound = 3;
here : for (int i = 0; i < bound; ++i)
{
there:

result += i;
goto elsewhere;

}
goto here;
elsewhere : if (result < 2)
{

goto there;
}
printf("%d\n", result);

What does this
code print?

23 - 2

Quiz: Goto Hell
// C code
int result = 0;
int bound = 3;
here : for (int i = 0; i < bound; ++i)
{
there:

result += i;
goto elsewhere;

}
goto here;
elsewhere : if (result < 2)
{

goto there;
}
printf("%d\n", result);

What does this
code print?

Nothing! It never
terminates.

24

Beyond gotos

� Go To Statement Considered Harmful
article by Edsger Dijkstra (CACM,
1968)

� Instead: Structured control flow

� Express algorithms with

� Sequencing

� Selection

� Iteration

25

Avoiding gotos

Use case of goto

� Jump to end of
subroutine

� Escape from middle
of loop

� Propagate to

surrounding context

Structured control
flow alternative
� return statement

� break and continue

statements

� Exceptions

26

Continuations

� Generalization of gotos

� Powerful language feature:
Allows programmer to define new
control flow constructs

� Exceptions

� Iterators

� Coroutines

� etc.

27

Continuations (2)

� High-level definition: Context in which
to continue execution

� Low-level definition: Three parts

� Code address (where to continue)

� Referencing environment (for resolving names)

� Another continuation (to use when code

returns)

28 - 1

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

28 - 2

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

Creates a continuation, i.e.,
execution will continue here

28 - 3

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

d is a reference to
the continuation

28 - 4

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

foo gets called
and calls itself
two more times

28 - 5

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

Jumps into
context captured
by c and makes
callcc appear
to return i

28 - 6

Example

Ruby code
def foo(i ,c)

printf("start %d; ", i)
if i < 3

foo(i+1, c)
else c.call(i)
end
printf "end %d; ", i

end

v = callcc{ |d| foo(1, d) }
printf "got %d\n", v

Code prints:
start 1; start 2; start 3; got 3

29 - 1

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

29 - 2

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

bar gets called and calls
itself two more times

29 - 3

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

Creates a continuation,
which gets stored in c

29 - 4

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

n is 2, therefore execution
jumps to the continuation

29 - 5

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

We are here again!

29 - 6

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

We are here again!

29 - 7

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

n is 1, therefore execution
jumps to the continuation

29 - 8

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

n is 0. We are finally done

29 - 9

Another Example
def here

return callcc { |a| return a }
end

def bar(i)
printf "start %d; ", i
b = if i < 3 then bar(i+1) else here end
printf "end %d; ", i
return b

end

n = 3
c = bar(1)
n = n - 1
puts # print newline
if n > 0 then c.call(c) end
puts "done"

Code prints:
start 1; start 2; start 3; end 3; end 2; end 1;
end 3; end 2; end 1;
end 3; end 2; end 1;
done

35

