
1

Analyzing Software using
Deep Learning

RNN-based Code Completion and
Repair

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022



2

Overview

� Recurrent neural networks (RNNs)

� Code completion with statistical
language models
Based on PLDI 2014 paper by Raychev et al.

� Repair of syntax errors
Based on ”Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016



14



15



16



17



7

Softmax Function

� Goal: Interpret output vector as a probability
distribution

� ”Squashes” vector of k values ∈ R into vector of k
values ∈ (0, 1) that sum up to 1

� Definition:

σ(y)j =
eyj∑k
i e

yi

for j = 1, .., k

� Example:

σ([1, 2, 3, 4, 1, 2, 3]) =

[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]



8 - 1

Quiz

Which of the following vectors may be
the output of the softmax function?

1.) y = [0.0, 0.0, 0.0, 0.0]

2.) y = [0.0, 0.25, 0.25, 0.5]

3.) y = [0.0, 1.0, 0.0, 0.0]

4.) y = [0.1, 0.1, 0.2, 0.3]



8 - 2

Quiz

Which of the following vectors may be
the output of the softmax function?

1.) y = [0.0, 0.0, 0.0, 0.0]

2.) y = [0.0, 0.25, 0.25, 0.5]

3.) y = [0.0, 1.0, 0.0, 0.0]

4.) y = [0.1, 0.1, 0.2, 0.3]

sum is not 1

sum is not 1

Note: Mathematically, 0 and 1 cannot occur. In practice, they may occur due
to rounding of floating point numbers.



9

Applications of RNNs

Useful for tasks where the input (and
maybe also the output) is a sequence

For example, predictions about ...

� Code (as a sequence of code tokens)

� Comments (as a sequence of words)

� Runtime trace (as a sequence of events)

� Log files (as a sequence of tokens/words)



10

Overview

� Recurrent neural networks (RNNs)

� Code completion with statistical
language models
Based on PLDI 2014 paper by Raychev et al.

� Repair of syntax errors
Based on ”Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016



11

Code Completion

� Given: Partial program with one or more holes

� Goal: Find suitable code to fill into the holes

� Basic variants in most IDEs

� Here: Fill holes with sequences of method calls

� Which methods to call

� Which arguments to pass



12

Example

SmsManager smsMgr = SmsManager.getDefault();

int length = message.length();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList<String> msgList =

smsMgr.divideMsg(message);

// hole H1

} else {

// hole H2

}



18



14 - 1

Model-based Code Completion

� Program code ≈ sentences in a
language

� Code completion ≈ Finding the most
likely completion of the current
sentence



14 - 2

Model-based Code Completion

� Program code ≈ sentences in a
language

� Code completion ≈ Finding the most
likely completion of the current
sentence

Challenges
� How to abstract code into sentences?
� What kind of language model to use?
� How to efficiently predict a completion



15

Overview of SLANG Approach

From ”Code Completion with Statistical Language Models”
by Raychev et al., 2014



19



20



18

Sequences of Method Calls

Abstracting code into sentences

� Method call ≈ word

� Sequence of method calls ≈ sentence

� Separate sequences for each object

� Objects can occur in call as base object,
argument, or return value



19

Option 1: Dynamic Analysis

Execute program and observe each
method call

Advantage:
� Precise results

Disadvantage:
� Only analyzes

executed code

if (getInput() > 5) { // Suppose always taken

obj.foo(); // in analyzed execution

} else {

obj.bar(); // Never gets analyzed

}



20

Option 2: Static Analysis

Reason about execution without
executing the code

Advantage:
� Can consider all

execution paths

Disadvantage:
� Need to abstract and

approximate actual
execution

if (getInput() > 5) {

a.foo(); // Does this call ever get executed?

}

b.bar(); // May a and b point to the same object?



22

Static Analysis of Call Sequences

SLANG approach: Static analysis

� Bound the number of analyzed loop iterations

� On control flow joins, take union of possible
execution sequences

� Points-to analysis to reason about references to
objects



23 - 1

Example
SmsManager smsMgr = SmsManager.getDefault();

int length = message.length();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList<String> msgList =

smsMgr.divideMsg(message);

} else {}



23 - 2

Example
SmsManager smsMgr = SmsManager.getDefault();

int length = message.length();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList<String> msgList =

smsMgr.divideMsg(message);

} else {} 5 sequences:

Object Calls

smsMgr (getDefault, ret)
smsMgr (getDefault, ret) · (divideMsg, 0)
message (length, 0)
message (length, 0) · (divideMsg, 1)
msgList (divideMsg, ret)



24

Training Phase

� Training data used for paper:
3 million methods from various Android projects

� Extract sentences via static analysis

� Train statistical language model

� Both n-gram and RNN model



25

Query Phase

� Given: Method with holes

� For each hole:

� Consider all possible completions of the partial
call sequence

� Query language model to obtain probability
• Average of n-gram and RNN models

� Return completed code that maximizes overall
probability



26 - 1

Example

SmsManager smsMgr = SmsManager.getDefault();

int length = message.length();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList<String> msgList =

smsMgr.divideMsg(message);

// hole H1

} else {

// hole H2

}



26 - 2

Example

SmsManager smsMgr = SmsManager.getDefault();

int length = message.length();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList<String> msgList =

smsMgr.divideMsg(message);

smsMgr.sendMultipartTextMessage(..., msgList, ...);

} else {

smsMgr.sendTextMessage(..., message, ...);

}



27

Scalability Tricks

Search space of possible completions:
Too large to explore in reasonable time

Refinements to reduce space
� Users may provide hints

� How many calls to insert
� Which objects to use

� Replace infrequent words with ”unknown”

� Obtain candidate calls using bi-gram model

� Query language model only for candidates



28

Overview

� Recurrent neural networks (RNNs)

� Code completion with statistical
language models
Based on PLDI 2014 paper by Raychev et al.

� Repair of syntax errors
Based on ”Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016



29

Motivation

� Given: Program with syntax error

� Goal: Find a fix that removes syntax
error

� Possible application context:
MOOCs with automated feedback on
programming tasks



30 - 1

Example (1)

def recPower (base , exp):

if exp <= 0:

return 1

return base * recPower (base , exp - 1



30 - 2

Example (1)

def recPower (base , exp):

if exp <= 0:

return 1

return base * recPower (base , exp - 1)



31 - 1

Example (2)

def recurPower (base , exp):

if exp == 0:

return = exp + 1

else:

return (base * recurPower (base ,exp - 1))



31 - 2

Example (2)

def recurPower (base , exp):

if exp == 0:

return base

else:

return (base * recurPower (base ,exp - 1))



31 - 3

Example (2)

def recurPower (base , exp):

if exp == 0:

return base

else:

return (base * recurPower (base ,exp - 1))

Beware: Fix of syntax error may not be
the semantically correct fix



21



22



34

SynFix Algorithm

Given: Program with syntax error + error location

Steps:
� Parse and tokenize program

� Query network with prefix of tokens until error
location

� Try if inserting or replacing one or more tokens
fixes the error

� If not: Delete line with error and query network
with prefix until the error line

� Try if inserting predicted tokens fixes the error



35

Summary

� Recurrent Neural Networks (RNNs)

� Powerful class of neural networks

� Most effective for inputs (and outputs) that are
sequences

� Two applications

� Code completion:
Predict next calls based on previous calls

� Repair of syntax errors:
Predict correct tokens based on previous
tokens


