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Overview

= Recurrent neural networks (RNNs) «—

= Code completion with statistical

language models
Based on PLDI 2014 paper by Raychev et al.

= Repair of syntax errors
Based on "Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016
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Softmax Function

m Goal: Interpret output vector as a probability
distribution

m "Squashes” vector of k£ values € R into vector of k
values € (0,1) that sumupto 1

m Definition:
eYi
O'(y)j = a— fOrj: 1,..,k

D i €Y
s Example:
o([1,2,3,4,1,2,3]) =
0.024,0.064,0.175,0.475,0.024,0.064, 0.175]




Quiz

Which of the following vectors may be
the output of the softmax function?

1.) vy =10.0,0.0,0.0,0.0]

2.) y=10.0,0.25,0.25,0.5]

3.) y=1[0.0,1.0,0.0,0.0
4) y=1[0.1,0.1,0.2,0.3]



Quiz

Which of the following vectors may be
the output of the softmax function?

1.) =gemdOe0r0-0+0-0=0=04= sum is not 1
2.) y= :0.0, 0.25,0.25, 0.5]

3) y=1[0.0,1.0,0.0,0.0]
4.) —tp{Ollelldee3l= sum is not 1

Note: Mathematically, 0 and 1 cannot occur. In practice, they may occur due
to rounding of floating point numbers.



Applications of RNNs

Useful for tasks where the input (and
maybe also the output) is a sequence

For example, predictions about ...

m Code (as a sequence of code tokens)

s Comments (as a sequence of words)

m Runtime trace (as a sequence of events)
m Log files (as a sequence of tokens/words)



Overview

= Recurrent neural networks (RNNs)

= Code completion with statistical €+

language models
Based on PLDI 2014 paper by Raychev et al.

= Repair of syntax errors
Based on "Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016
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Code Completion

Given: Partial program with one or more holes
Goal: Find suitable code to fill into the holes
Basic variants in most IDEs

Here: Fill holes with sequences of method calls
1 Which methods to call

o Which arguments to pass
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Example

SmsManager smsMgr = SmsManager.getDefault() ;
int length = message.length();
if (length > MAX SMS MESSAGE IENGTH) {
ArrayList<String> msgList =
smsMgr .divideMsg (message) ;
// hole H1
} else {
// hole H2
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Model-based Code Completion

= Program code =~ sentences in a
language

= Code completion ~ Finding the most
likely completion of the current
sentence

14 -
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Model-based Code Completion

= Program code =~ sentences in a
language

= Code completion ~ Finding the most
likely completion of the current
sentence

Challenges

m How to abstract code into sentences?
s What kind of language model to use?
s How to efficiently predict a completion

14 -



Overview of SLANG Approach

Training Phase Query Phase
Training Partial program let;
t
dataset with holes Clop
J Abstraction l Abstraction Constraints Combine
Sent Sentences _
S with holes Candidate

sentences
lTrain LM LM IOOkN /

Statistical Language Model

From "Code Completion with Statistical Language Models”
by Raychev et al., 2014
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Sequences of Method Calls

Abstracting code into sentences
s Method call ~ word
m Sequence of method calls ~ sentence
m Separate sequences for each object

m Objects can occur in call as base object,
argument, or return value
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Option 1: Dynamic Analysis

Execute program and observe each
method call

Advantage: Disadvantage:

m Precise results m Only analyzes
executed code

if (getInput() > 5) { // Suppose always taken
obj.foo(); // in analyzed execution

} else {
obj.bar(); // Never gets analyzed

}

19



Option 2: Static Analysis

Reason about execution without
executing the code

Advantage: Disadvantage:
m Can consider all = Need to abstract and
execution paths approximate actual
execution

if (getInput() > 5) {
a.foo(); // Does this call ever get executed?

}

b.bar(); // May a and b point to the same ocbject?
20



Static Analysis of Call Sequences

SLANG approach: Static analysis
s Bound the number of analyzed loop iterations

m On control flow joins, take union of possible
execution sequences

m Points-to analysis to reason about references to
objects

22



Example

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX SMS MESSAGE. LENGTH) {
ArrayList<String> msglist =
smsMgr .divideMsg(message) ;
} else {}
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Example

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length() ;
if (length > MAX SMS MESSAGE IENGTH) {
ArrayList<String> msglist =
smsMgr .divideMsg (message) ;
5 sequences:

} else {}

Object Calls

smsMgr (getDefault, ret)

smsMgr (getDefault, ret) - (divideMsg, 0)
message (length, 0)

message (length, 0) - (divideMsg, 1)
msgList (divideMsg, ret)

23 -



Training Phase

m [raining data used for paper:
3 million methods from various Android projects

m Extract sentences via static analysis

m [rain statistical language model

0 Both n-gram and RNN model

24



Query Phase

m Given: Method with holes

m For each hole:

0 Consider all possible completions of the partial
call sequence

0 Query language model to obtain probability
« Average of n-gram and RNN models

m Return completed code that maximizes overall
probability
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Example

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX SMS MESSAGE LENGTH) ({
ArrayList<String> msgList =
smsMgr .divideMsg(message) ;
// hole H1
} else {
// hole H2

26 -
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Example

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX SMS MESSAGE LENGTH) ({

ArrayList<String> msgList =

smsMgr .divideMsg(message) ;

smsMgr . sendMultipartTextMessage(. .., msglist,
} else {

smsMgr . sendTextMessage(. .., message, ...);

)

26 -



Scalability Tricks

Search space of possible completions:
Too large to explore in reasonable time

Refinements to reduce space
m Users may provide hints

o How many calls to insert
o Which objects to use

m Replace infrequent words with "unknown”
m Obtain candidate calls using bi-gram model
m Query language model only for candidates

27



Overview

= Recurrent neural networks (RNNs)

= Code completion with statistical

language models
Based on PLDI 2014 paper by Raychev et al.

= Repair of syntax errors e—
Based on "Automated correction for syntax errors in
programming assignments using recurrent neural
networks” by Bhatia & Singh, 2016
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Motivation

= Given: Program with syntax error

= Goal: Find a fix that removes syntax
error

= Possible application context:
MOOCs with automated feedback on
programming tasks
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Example (1)

def recPower (base , exp) :
if exp <= 0:
return 1

return base * recPower (base , exp -1

30 -
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Example (1)

def recPower (base , exp) :
if exp <= 0:
return 1

return base * recPower (base , exp — 1)

!

30 -



Example (2)

def recurPower (base , exp):
if exp == 0:
return = exp + 1
else:

return (base * recurPower (base ,exp — 1))

31 -



Example (2)

def recurPower (base , exp):
if exp == 0:
return base @@=
else:

return (base * recurPower (base ,exp — 1))

31
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Example (2)

def recurPower (base , exp):
1f exp == 0:
return base @@=
else:

return (base * recurPower (base ,exp — 1))

Beware: Fix of syntax error may not be
the semantically correct fix

31
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SynFix Algorithm

Given: Program with syntax error + error location

Steps:

Parse and tokenize program

Query network with prefix of tokens until error
location

Try if inserting or replacing one or more tokens
fixes the error

If not: Delete line with error and query network
with prefix until the error line

Try if inserting predicted tokens fixes the error
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Summary

m Recurrent Neural Networks (RNNs)

0 Powerful class of neural networks

o Most effective for inputs (and outputs) that are
sequences

m [wo applications

o Code completion:
Predict next calls based on previous calls

0 Repair of syntax errors:

Predict correct tokens based on previous
tokens
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