
1

Analyzing Software using
Deep Learning

Introduction

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022



2

About Me: Michael Pradel

� Since 9/2019: Full Professor
at University of Stuttgart

� Before
� Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)
� PhD at ETH Zurich, Switzerland
� Postdoctoral researcher at UC Berkeley, USA
� Assistant Professor at TU Darmstadt
� Sabbatical at Facebook, Menlo Park, USA



3

About the Software Lab

� My research group since 2014
� Focus: Tools and techniques for

building reliable, efficient, and secure
software
� Program testing and analysis
� Machine learning, security

� Thesis and job opportunities



4

Overview

� Motivation
� What the course is about
� Why it is interesting
� How it can help you

� Organization
� Lectures and final exam
� Course project

� Basics
� Program analysis
� Deep learning



5 - 1

What is Program Analysis?

� Automated analysis of program
behavior, e.g., to
� find programming errors
� optimize performance
� find security vulnerabilities

ProgramInput Output



5 - 2

What is Program Analysis?

� Automated analysis of program
behavior, e.g., to
� find programming errors
� optimize performance
� find security vulnerabilities

Program

Additional information

Input Output



5 - 3

What is Program Analysis?

� Automated analysis of program
behavior, e.g., to
� find programming errors
� optimize performance
� find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output



6

Why Do We Need It?

Basis for various tools that make
developers productive
� Compilers
� Bug finding tools
� Performance profilers
� Code completion
� Automated testing
� Code summarization/documentation



7

Traditional Approaches

� Analysis has built-in knowledge about
the problem to solve

� Significant human effort to create a
program analysis
� Conceptual challenges
� Implementation effort

� Analyze a single program at a time



8

Learning from Existing Data

� Huge amounts of existing code
(”big code”)

� Programs are regular and repetitive

� Machine learning: Extract knowledge
and apply in new contexts

� E.g., learn how to ..
� .. complete partial code
� .. use an API
� .. find and fix programming errors
� .. create inputs for testing



9

Deep Learning

Class of machine learning algorithms
� Neural network architectures
� ”Deep” = multiple layers
� Features and representation of inputs are

extracted automatically

Revolutionizes entire areas



10

This Course

Intersection of program analysis and
deep learning
� Some of the basics:

E.g., program representations, neural network
architectures

� State of the art research results:
Based on recent research papers

� Hands-on experience:
Coding project



11

Not This Course

What this course is not about
� Detailed coverage of program analysis
� Detailed coverage of machine learning
� Programming tutorial for some ML library

Check out related courses
� E.g., ”Program Analysis” (winter semester)



12

Overview

� Motivation
� What the course is about
� Why it is interesting
� How it can help you

� Organization
� Lectures and final exam
� Course project

� Basics
� Program analysis
� Deep learning



13 - 1

Organization

� Until May 17: Lectures

� From May 17: Course project

� End of semester: Final exam



13 - 2

Organization

� Until May 17: Lectures

� From May 17: Course project

� End of semester: Final exam

Grading:

50%

50%



14

Lectures

� Nine lectures

� Mondays (9:45am) and Tuesdays
(2:00pm)

� Not all slots are used: Check the schedule at

https://software-lab.org/teaching/summer2022/asdl/

� Reading material:
Recent research papers



15

Course Project

� Individual, independent project

� Same task for everybody

� Implement and evaluate a neural
software analysis that detects bugs

� Based on existing tools
� PyTorch library for machine learning
� Python as implementation and target language

� More details on May 17



16

Final Exam

� Content of lectures and reading
material

� Open book

� One hour

� Will test your understanding, not your
memory

� Alternative: Combined oral exam
(“Vertiefungsprüfung”)



17

Ilias

Platform for discussions and sharing
additional material

� Please register for the course

� Use the forum for all questions related to the
course

� Messages sent to all students go via Ilias

� See link on
https://software-lab.org/teaching/summer2022/asdl/



18

Plan for Today

� Introduction
� What the course is about
� Why it is interesting
� How it can help you

� Organization
� Lectures and final exam
� Course project

� Basics
� Program analysis
� Deep learning



19 - 1

Program Representations

Many ways to represent (parts of) a
program
� Sequence of characters

� Sequence of tokens

� Abstract syntax tree

� Control flow graph

� Data dependence graph

� Call graph

� etc.



19 - 2

Program Representations

Many ways to represent (parts of) a
program
� Sequence of characters

� Sequence of tokens

� Abstract syntax tree

� Control flow graph

� Data dependence graph

� Call graph

� etc.



20

Tokens

Tokenizer (or lexer)
� Part of compiler
� Splits sequence of characters into subsequences

called tokens

E.g., for Java, six kinds of tokens:
� Identifiers, e.g., MyClass
� Keywords, e.g., if
� Separators, e.g., . or {
� Operators, e.g., * or ++
� Literals, e.g., 23 or "hi"
� Comments, e.g., /* bla */



1



22

Abstract Syntax Tree

� Tree representation of source code

� ”Abstract” because some details of
syntax omitted
� E.g., { in Java

� Nodes: Construct in source code

� Edges: Parent-child relationship

� Check out this page for obtaining
ASTs of various languages:
https://astexplorer.net/



2



24

Control Flow Graph

� Models flow of control through a
program

� Graph (N,E) with

� Nodes N : Basic blocks = Sequence of

operations executed together

� Edges E: Possible transfers of control

� Typically on the method-level



3



26

Data Dependence Graph

� Models flow of data from “definition”
to “use”

� Graph (N,E) with

� Nodes N : Operations that define and/or use

data

� Edges E: Possible definition-use relationships

• Edge e = (n1, n2) means n2 may use data

defined at n1



4



28

Deep Learning: Example

Example: Handwriting recognition
� Goal: Recognize digits 0..9

� Easy for a human but challenging for a computer

� Idea: Learn from a large number of training
examples

� Deep learning: > 99% accuracy

Following slides based on Chapter 1 of
neuralnetworksanddeeplearning.com



5



6



7



8



33

Universal Computation

� Networks of NAND perceptrons can
simulate every circuit containing only
NAND gates

� Can express arbitrary computations!



34

Example: Adding Two Bits

NAND gate:

Network of perceptrons:



35

Challenge: Set Weights and Biases

� More complex networks can perform arbitrary
computations

� How to decide on the weights and biases?

� Option 1: Hand-tune them
→ Infeasible for complex networks

� Option 2: Learn them
→ Key idea behind machine learning with neural
networks



9



10



11



12



43

Quiz: Cost Function

� Recognition of hand-written digits

� Only digits 0, 1, and 2

� Training examples:

Example Desired Actual

1 (0, 1, 0)T (0.5, 0.5, 0)T

2 (1, 0, 0)T (1, 0, 0)T

� What is the value of the cost function?



44

Goal: Minimize Cost Function

� Goal of learning: Find weights and
biases that minimize the cost function

� Approach: Gradient descent
� Compute gradient of C: Vector of partial

derivatives

� ”Move” closer toward
minimum step-by-step

� Learning rate
determines step size



13



45

Training Examples

� Effort of computing gradient depends
on number of examples

� Stochastic gradient descent
� Use small sample of all examples
� Compute estimate of true gradient

� Epochs and mini-batches
� Split training examples into k mini-batches
� Train network with each mini-batch
� Epoch: Each mini-batch used exactly once


