Analyzing Software using Deep Learning

Introduction

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart Summer 2022

About Me: Michael Pradel

Since 9/2019: Full Professor at University of Stuttgart

Before

- Studies at TU Dresden, ECP (Paris),
 and EPFL (Lausanne)
- PhD at ETH Zurich, Switzerland
- Postdoctoral researcher at UC Berkeley, USA
- Assistant Professor at TU Darmstadt
- Sabbatical at Facebook, Menlo Park, USA

About the Software Lab

- My research group since 2014
- Focus: Tools and techniques for building reliable, efficient, and secure software
 - Program testing and analysis
 - Machine learning, security
- Thesis and job opportunities

Overview

Motivation

- What the course is about
- Why it is interesting
- How it can help you

Organization

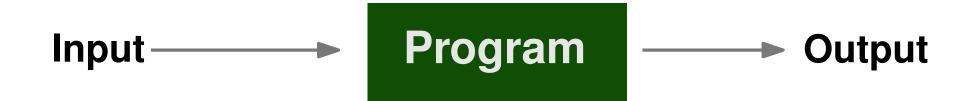
- Lectures and final exam
- Course project

Basics

- Program analysis
- Deep learning

What is Program Analysis?

- Automated analysis of program behavior, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities

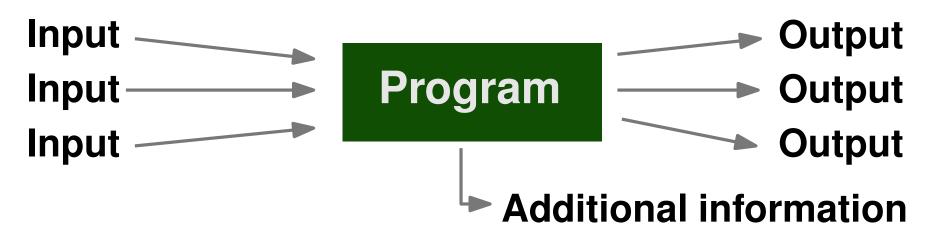


What is Program Analysis?

- Automated analysis of program behavior, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities

What is Program Analysis?

- Automated analysis of program behavior, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities



Why Do We Need It?

Basis for various tools that make developers productive

- Compilers
- Bug finding tools
- Performance profilers
- Code completion
- Automated testing
- Code summarization/documentation

Traditional Approaches

- Analysis has built-in knowledge about the problem to solve
- Significant human effort to create a program analysis
 - Conceptual challenges
 - Implementation effort
- Analyze a single program at a time

Learning from Existing Data

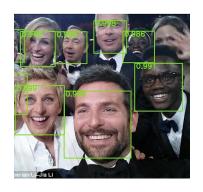
- Huge amounts of existing code ("big code")
- Programs are regular and repetitive
- Machine learning: Extract knowledge and apply in new contexts
- E.g., learn how to ..
 - .. complete partial code
 - use an API
 - .. find and fix programming errors
 - .. create inputs for testing

Deep Learning

Class of machine learning algorithms

- Neural network architectures
- "Deep" = multiple layers
- Features and representation of inputs are extracted automatically

Revolutionizes entire areas



This Course

Intersection of program analysis and deep learning

- Some of the basics:
 - E.g., program representations, neural network architectures
- State of the art research results:
 Based on recent research papers
- Hands-on experience:Coding project

Not This Course

What this course is not about

- Detailed coverage of program analysis
- Detailed coverage of machine learning
- Programming tutorial for some ML library

Check out related courses

■ E.g., "Program Analysis" (winter semester)

Overview

Motivation

- What the course is about
- Why it is interesting
- How it can help you

Organization

- Lectures and final exam
- Course project

Basics

- Program analysis
- Deep learning

Organization

- Until May 17: Lectures
- From May 17: Course project
- End of semester: Final exam

Organization

Grading:

- Until May 17: Lectures
- From May 17: Course project → 50%
- End of semester: Final exam → 50%

Lectures

- Nine lectures
- Mondays (9:45am) and Tuesdays (2:00pm)
 - Not all slots are used: Check the schedule at https://software-lab.org/teaching/summer2022/asdl/
- Reading material:Recent research papers

Course Project

- Individual, independent project
- Same task for everybody
- Implement and evaluate a neural software analysis that detects bugs
- Based on existing tools
 - PyTorch library for machine learning
 - Python as implementation and target language
- More details on May 17

Final Exam

- Content of lectures and reading material
- Open book
- One hour
- Will test your understanding, not your memory

 Alternative: Combined oral exam ("Vertiefungsprüfung")

llias

Platform for discussions and sharing additional material

- Please register for the course
- Use the forum for all questions related to the course
- Messages sent to all students go via Ilias
- See link on https://software-lab.org/teaching/summer2022/asdl/

Plan for Today

Introduction

- What the course is about
- Why it is interesting
- How it can help you

Organization

- Lectures and final exam
- Course project

Basics

- Program analysis
- Deep learning

Program Representations

Many ways to represent (parts of) a program

- Sequence of characters
- Sequence of tokens
- Abstract syntax tree
- Control flow graph
- Data dependence graph
- Call graph
- etc.

Program Representations

Many ways to represent (parts of) a program

- Sequence of characters
- Sequence of tokens
- Abstract syntax tree
- Control flow graph
- Data dependence graph
- Call graph
- etc.

Tokens

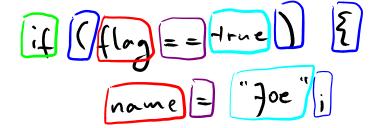
Tokenizer (or lexer)

- Part of compiler
- Splits sequence of characters into subsequences called tokens

E.g., for Java, six kinds of tokens:

- Identifiers, e.g., MyClass
- Keywords, e.g., if
- Separators, e.g., . or {
- Operators, e.g., * or ++
- Literals, e.g., 23 or "hi"
- Comments, e.g., /* bla */

Token: Example



Keyword
Separators
Identifiers
Operators
Literals

Abstract Syntax Tree

- Tree representation of source code
- "Abstract" because some details of syntax omitted
 - □ E.g., { in Java
- Nodes: Construct in source code
- Edges: Parent-child relationship
- Check out this page for obtaining ASTs of various languages: https://astexplorer.net/

Abstract Syntax Tree: Example

Example: JavaScript

var x = 6*4;

Program

Variable De claration

declarations

Variable Declarator

Identifier

Binary Expression

op | left isht

x Literal Identifier

loane

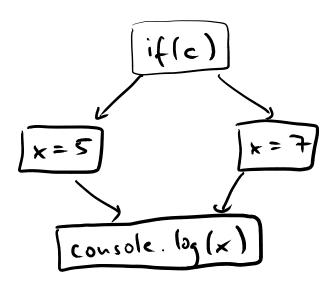
y

Control Flow Graph

- Models flow of control through a program
- \blacksquare Graph (N, E) with
 - □ Nodes N: Basic blocks = Sequence of operations executed together
 - Edges E: Possible transfers of control
- Typically on the method-level

Control Flow Graph: Example

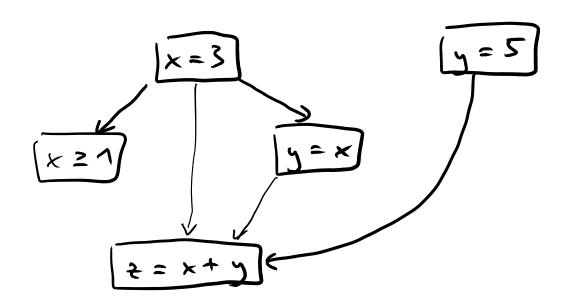
console. log (x)



Data Dependence Graph

- Models flow of data from "definition" to "use"
- \blacksquare Graph (N, E) with
 - Nodes N: Operations that define and/or use data
 - \square Edges E: Possible definition-use relationships
 - Edge $e=(n_1,n_2)$ means n_2 may use data defined at n_1

Data Dependence Graph: Example



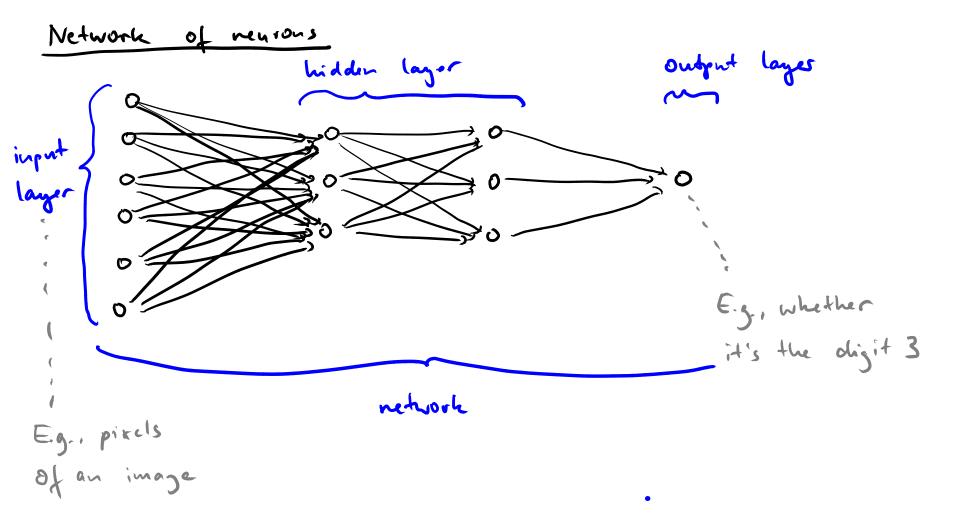
Deep Learning: Example

Example: Handwriting recognition

- Goal: Recognize digits 0..9
- Easy for a human but challenging for a computer
- Idea: Learn from a large number of training examples
- Deep learning: > 99% accuracy

504192

Following slides based on Chapter 1 of neuralnetworksanddeeplearning.com



Perceptions

Ly Most basic kind of neuron
Ly Binary inputs
Ly Binary output

output =
$$\begin{cases} 0 & \text{if } \sum w_j \cdot x_j \leq \text{threshold} \\ 1 & \text{if } \sum w_j \cdot x_j > \text{threshold} \end{cases}$$

$$= \begin{cases} 0 & \text{if } v \cdot x + b \leq 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

w... weights b... bias

Example

Assume:
$$x_1 = 1, x_2 = 1, x_3 = 0$$

 $w \cdot x = 5 \cdot 1 + 3 \cdot 1 + 0 \cdot 1 = 8$
output = $\begin{cases} 0 & \text{if } 8 - 7 \leq 0 \\ 1 & \text{if } 8 - 7 > 0 \end{cases}$ Go to fishival

× 1	× 2	output.		
D	0	1	becomse	0+3>0
0	1	1		
1	0	1		
1	1	10		

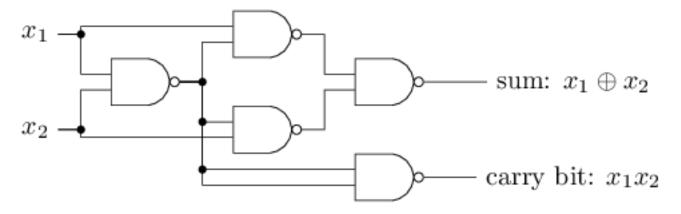
•

Universal Computation

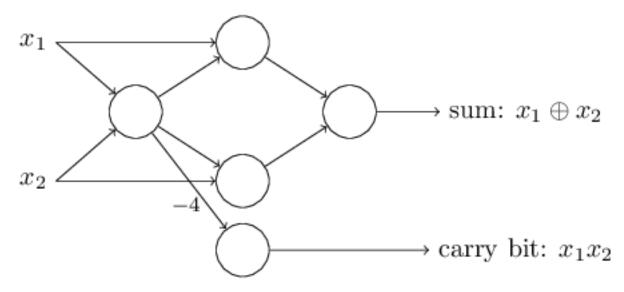
- Networks of NAND perceptrons can simulate every circuit containing only NAND gates
- Can express arbitrary computations!

Example: Adding Two Bits

NAND gate:



Network of perceptrons:



Challenge: Set Weights and Biases

- More complex networks can perform arbitrary computations
- How to decide on the weights and biases?
- Option 1: Hand-tune them
 - → Infeasible for complex networks
- Option 2: Learn them
 - → Key idea behind machine learning with neural networks

Making learning possible

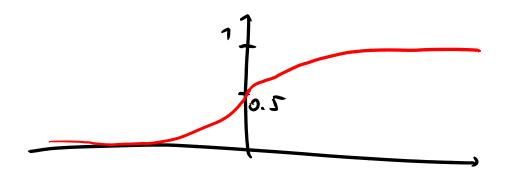
O what o output + soutput

Want: Small change of weights & biases causes small change of output

Problem: Perception doesn't provide this property output = step (w.x+6)

Signoid neuron

 $\begin{array}{c} x_1 & w_1 \\ x_2 & w_2 \\ \end{array}$



arbiteary values in [0,1]

output = o (w·x+5)

Figuroid fed.: $\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-|\Sigma w_j \cdot x_i + b)}$

- Enables learning: Small change courses small change

Activation functions

step function

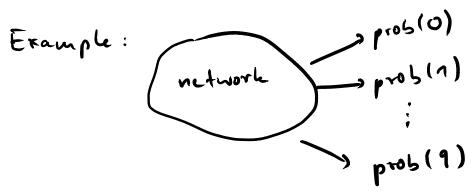
sigmoid fet./ logistic fet.

identity fot.

rectifice linear unit ("relu") .

Learning: Cost Function

4 Feedback on how good output is for given input



If object is known to be 6, went output:

Actual output may be:

 $C = \frac{\Lambda}{n} \cdot \sum_{k} \|y(k) - \alpha\|^2$

ub. of tearning inputs

... quadratic cost fot.

mean squared mor

Quiz: Cost Function

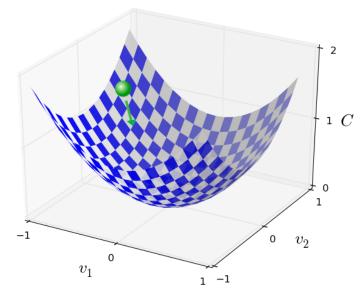
- Recognition of hand-written digits
- Only digits 0, 1, and 2
- Training examples:

Example	Desired	Actual	
1	$(0, 1, 0)^T$	$(0.5, 0.5, 0)^T$	
2	$(1,0,0)^T$	$(1, 0, 0)^T$	

What is the value of the cost function?

Goal: Minimize Cost Function

- Goal of learning: Find weights and biases that minimize the cost function
- Approach: Gradient descent
 - Compute gradient of C: Vector of partial derivatives
 - "Move" closer toward minimum step-by-step
 - Learning ratedetermines step size



$$C = \frac{1}{n} \cdot \sum_{x} \|y(x) - \alpha\|^{2}$$

$$= \frac{1}{2} \cdot (\|(-0.5, 0.5, 0)\|^{2} + \|(0, 0.0)\|^{2})$$

$$= \frac{2}{3} \cdot (0.5 + 0) = 0.25$$

•

Training Examples

- Effort of computing gradient depends on number of examples
- Stochastic gradient descent
 - Use small sample of all examples
 - Compute estimate of true gradient
- Epochs and mini-batches
 - Split training examples into k mini-batches
 - Train network with each mini-batch
 - Epoch: Each mini-batch used exactly once