Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

About Me: Michael Pradel

= Since 9/2019: Full Professor
at University of Stuttgart

= Before
0 Studies at TU Dresden, ECP (Paris),

and EPFL (Lausanne)

PhD at ETH Zurich, Switzerland

Postdoctoral researcher at UC Berkeley, USA

Assistant Professor at TU Darmstadt

Sabbatical at Facebook, Menlo Park, USA

I I I R

About the Software Lab

= My research group since 2014

s Focus: Tools and techniques for
building reliable, efficient, and secure

software

o Program testing and analysis
o Machine learning, security

= Thesis and job opportunities

Overview

= Motivation <—
o What the course is about
0 Why it is interesting
o How it can help you

= Organization
o Lectures and final exam
o Course project

= Basics
o Program analysis
o Deep learning

What is Program Analysis?

= Automated analysis of program

behavior, e.g., to

o find programming errors

0 optimize performance

o find security vulnerabillities

- 1

What is Program Analysis?

= Automated analysis of program

behavior, e.g., to

o find programming errors

0 optimize performance

o find security vulnerabillities

L Additional information s -

What is Program Analysis?

= Automated analysis of program

behavior, e.g., to

o find programming errors

0 optimize performance

o find security vulnerabillities

Input — . _ —» Output
— = Output

Input —
L Additional information

Why Do We Need It?

Basis for various tools that make
developers productive

Compilers

Bug finding tools

Performance profilers

Code completion

Automated testing

Code summarization/documentation

Traditional Approaches

= Analysis has built-in knowledge about
the problem to solve

= Significant human effort to create a
program analysis

o Conceptual challenges
o Implementation effort

= Analyze a single program at a time

Learning from Existing Data

= Huge amounts of existing code
("big code™)
= Programs are regular and repetitive

= Machine learning: Extract knowledge
and apply in new contexts

s E.g., learn how to ..

.. complete partial code

.. use an APl

.. find and fix programming errors
.. create inputs for testing

I T I R

Deep Learning

Class of machine learning algorithms

m Neural network architectures

m "Deep” = multiple layers

m Features and representation of inputs are
extracted automatically

Revolutionizes entire areas

U+ AlphaGo

¢

'Ok Google'

This Course

Intersection of program analysis and
deep learning

m Some of the basics:

E.g., program representations, neural network
architectures

m State of the art research results:
Based on recent research papers

m Hands-on experience:
Coding project

10

Not This Course

What this course is not about

m Detailed coverage of program analysis
m Detailed coverage of machine learning
m Programming tutorial for some ML library

Check out related courses

m E.g., "Program Analysis” (winter semester)

11

Overview

= Motivation
o What the course is about
0 Why it is interesting
o How it can help you

= Organization =———
o Lectures and final exam
o Course project

= Basics
o Program analysis
o Deep learning

12

Organization

= Until May 17: Lectures
= From May 17: Course project
= End of semester: Final exam

13 -

1

Organization

Grading:
= Until May 17: Lectures

= From May 17: Course project — 50%
= End of semester: Final exam — 50%

13 -

Lectures

s Nine lectures

= Mondays (9:45am) and Tuesdays
(2:00pm)

o Not all slots are used: Check the schedule at

https://software-lab.org/teaching/summer2022/asdl/

= Reading material:
Recent research papers

14

Course Project

= Individual, independent project
= Same task for everybody

= Implement and evaluate a neural
software analysis that detects bugs

= Based on existing tools

o PyTorch library for machine learning
o Python as implementation and target language

= More details on May 17

15

Final Exam

= Content of lectures and reading
material

= Open book
= One hour

= Will test your understanding, not your
memory

s Alternative: Combined oral exam
(“Vertiefungsprufung™)

16

llias

Platform for discussions and sharing
additional material

Please reqister for the course

Use the forum for all questions related to the
course

Messages sent to all students go via llias

See link on
https://software-lab.org/teaching/summer2022/asdl/

17

Plan for Today

= Introduction
o What the course is about
0 Why it is interesting
o How it can help you

= Organization
o Lectures and final exam
o Course project

= Basics «——
o Program analysis
o Deep learning

18

Program Representations

Many ways to represent (parts of) a
program

m Sequence of characters

m Sequence of tokens

m Abstract syntax tree

m Control flow graph

m Data dependence graph

m Call graph

m etc.

Program Representations

Many ways to represent (parts of) a
program

m Sequence of characters

m| Sequence of tokens

m| Abstract syntax tree

m| Control flow graph

m| Data dependence graph
m Call graph

m etc.

19 -

Tokens

Tokenizer (or lexer)
m Part of compiler
m Splits sequence of characters into subsequences
called tokens

E.g., for Java, six kinds of tokens:

Identifiers, e.g., MyClass
Keywords, e.g., if
Separators, e.g., . or{
Operators, e.g., = or ++
Literals, e.g., 23 or "hi™"
Comments, e.g., /* bla x/

20

Abstract Syntax Tree

= Tree representation of source code

s Abstract” because some details of
syntax omitted
0 E.g., { inJava

s Nodes: Construct in source code

s Edges: Parent-child relationship

= Check out this page for obtaining
ASTs of various languages:
https://astexplorer.net/

22

Abshenct S")V‘"‘"“ o

—

e -

Ekaw')k

EX&Mr(‘ : ﬁ’avr g(r;p"'

var X = é"‘j'\

Variable Defarate”

X

(a(.wJ\'[-:tf‘ Buer Ekr“‘““’“‘ Lk
\maw(OP/ ‘b('k &
< * Liteal Ik e
value \nawc

o 9

Control Flow Graph

= Models flow of control through a
program

= Graph (V, F') with

0 Nodes N: Basic blocks = Sequence of
operations executed together

0 Edges E: Possible transfers of control

= Typically on the method-level

24

Cov\“‘ro('{':\ow G“GP(A . gxmr(&

‘4 (C\ ?

X';;

ge}s&{-

x= *

S

C,O\ASO\C. \03 (;(\

Data Dependence Graph

= Models flow of data from “definition”
to “use”

= Graph (V, F') with

o Nodes N: Operations that define and/or use
data

0 Edges E': Possible definition-use relationships

. Edge e = (n1,n2) means ny may use data

defined at n;

26

Dota bepwa‘*wu G"«r\,\: Exawrb.

x=3

b:

’.,((xz'l\ f
)X

Deep Learning: Example

Example: Handwriting recognition
m Goal: Recognize digits 0..9

m Easy for a human but challenging for a computer

m ldea: Learn from a large number of training
examples

m Deep learning: > 99% accuracy

SO0H/9&

Following slides based on Chapter 1 of
neuralnetworksanddeeplearning.com 28

NeAworle. of wturows

?trur,%ws

—

L, Noyt bassc Lkimo\ o,‘, i O K1 W,
4
‘d Bi\/\ﬂ) iv\rw""s)(l _ig Ob_; OU\'\"'\
L) Bi\/\“'j O\A"""\+ I(,S 3
b ... blas

{ 0 £ Z Wy X < Horo el
J

1 ‘i Z ""J .xi > -"\.‘-QLO\A

g\(Wpur

K(\ = u(h“"’\(| g ;S

500 0‘

X 4 = ":‘-:c\,o“s 30

Jy =1
X‘S: \;*b CMK

X -0
Acsumce : Xa=", Lk SR i

- ¢.A+3. a4+ 017 g
O ;& e"} _‘,O

o oukpt = 52
) &u&rw %,L.u

(e (&0‘«\4\/0(

0w‘fw¥ = §4 .w(» §~3 >9 —— Go "ﬁ%kvq‘

(o
“A
PM)
L\ } Lo)
f)‘c%\. s
W
A\V_ W ‘\9
\n

N
AND
boc\g

1
be corm
<

9,
+3>0

Universal Computation

= Networks of NAND perceptrons can
simulate every circuit containing only
NAND gates

= Can express arbitrary computations!

33

Example: Adding Two Bits

NAND gate:

L1 —

Da

Ba

Lo —e T

Da

} sum: x4 ro

!

D}— carry bit: rixs

Network of perceptrons:

i

sum: 1y ‘B ae

—4
» carry bit: x1axo

34

Challenge: Set Weights and Biases

m More complex networks can perform arbitrary
computations

m How to decide on the weights and biases?

m Option 1: Hand-tune them
— Infeasible for complex networks

m Option 2: Learn them
— Key idea behind machine learning with neural
networks

35

nll‘-‘Vv\ LLR"W\» rOSStIOLL

U“'A\J
\\ O Oh'lfw“'“' AW"-'V»

Wont : Swra U QL\A\,\)c °r[’ \,Jd) Lits & blases
comses sumoadd clhavae q_\, OW"‘TR’"
Preo blewa ?Cfukaw o\ots\r:" rfom‘ob, s rrof{&?

-4

IV S R

G\M‘-qw"’ = 94"‘{’ (W""" 5) j

> K

S‘ \VV‘OQ\ c\ Ay YO
—

R 1

Xa L) O_'__) OIA"TW-"

)y 5 9.5
-~

X3
\]
~ /
orb§-'-(a() vales i tO\,\]
-
. [
O\r}fv\"‘ = © (!-J x+)
- 1
N . A - a'(%) =2 = i
. S‘D""o‘e‘ &c - 4+€*t N+ exp (‘(ij'xi ""!3)3
J

—-)E\Mlg(gs L&“"W;"\s*. S’WA\A o\f“vst Comnse S sw\au c-\n«ujt

Ac—‘-;\la\f'\‘(’v‘ ,(\AV\C"\‘ ons

™1

g’\-(P ,.(uw\cf'l“ O

Q\B\Mﬁd &"* /

\oz\' s*‘« &"L .

b]

'..(U‘-\Q,td NP

Awn +

—

(ﬂ\h “)

—
. 1! 1
dheukity ok /T/
L~

11

12

(_eww\‘;,,‘ . Coct o e on

L" Q&dhﬂ»d‘- O how 3”6‘ O\AA"'V‘A' \0 &0" 81&\/\ 'suuuv\"'

If oyt s kwowa do Le 6

hlg

[to‘c(o)
b‘mm"u: /f (n) w ant o»»‘\‘u-lr :

Ve o’fL. g

A rw.‘: 3("\:(0‘0.0, o'o\o)/\.o,o,o)
~ ‘,1-05(1) Acheal ow“-u"- - be
i. (000 02 0,0, 0% 01,00)
2
Cc- a ‘ Z " 3(‘)‘ G\ " .- %V\&O*“’\‘\“Q (OS;V &O’L.
. X

WALG A sg‘wﬂé adal

hb. O,‘, ""W\‘m3 ;V\‘)\A"’S

Quiz: Cost Function

= Recognition of hand-written digits
= Only digits 0, 1, and 2
= Training examples:

Example Desired Actual

1 (0,1,00" (0.5,0.5,0)"
2 (1,0,0)" (1,0,0)%

= What is the value of the cost function?

43

Goal: Minimize Cost Function

= Goal of learning: Find weights and
biases that minimize the cost function

= Approach: Gradient descent

o Compute gradient of C': Vector of partial
derivatives

o "Move” closer toward [9)
minimum step-by-step \\ LY @/4/
A

- ““‘»:0 “”%
o Learning rate &W

determines step size

44

— o~

(-2 &1y -al’

X

IR | (Xz‘)y%)'l = \)xagl* 2t

=4 (o5, oF, ol 4 (0,0.0)")

-2 (0_5‘4-0\ = 0.2§
2

13

Training Examples

= Effort of computing gradient depends
onh number of examples

= Stochastic gradient descent

0 Use small sample of all examples
o Compute estimate of true gradient

s Epochs and mini-batches

0 Split training examples into k£ mini-batches
o Train network with each mini-batch
o Epoch: Each mini-batch used exactly once

45

