Analyzing Software using
Deep Learning

Reasoning about Types and Code Changes
with Hierarchical Networks

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

Overview

s Hierarchical neural networks e=—

= Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

= Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

Motivation

= What if the input to a predictive model
consists of multiple parts that

o are too many to simply concatenate
0 are not a sequence

1 may each have a different structure?

Examples

s Document
o Lines of words

0 Images

o Plots

= Evidence of program crash
o Stack trace
o Error message

o Information about the user (key-value pairs)

Examples (2)

= Program elements that have a type
1 Code tokens

0 ldentifier names

1 Comments associated with the function
= Commits to a code repository
1 Code change
« Multiple code locations

0 Commit messages

23

?Ass/»-fa;(

3
€

\,u;\or‘

COUVSe

Siva e wawder:

Hierarchical Neural Networks

= Neural model composed of submodels
= Aligned into a hierarchy

o E.g., a tree where inputs arrive at leaves

o Information propagates from leaves to the root

s Prediction based on summarized
iInformation at root

Submodels

= Each submodel: Encode specific part
of input

= Different submodels may be different
kinds of neural networks

0 E.g., feedforward network for some input,
RNN for some other input

Hicf‘arc(«(c&(Nodel ‘40 (lam: '{-u\ LOLQ\M(V\‘B

‘/\ A vtd‘or
: DS\A\MMQ Ve “()A’

™ o

_>\Rux\)-%-”

Texr

—_
)
7 5
\ww (53 S _—_—__ao D
) L — CMM—*D
8

Tlats

?0‘ S< / {A\L

CoOuve

24

Jointly Training the Model

How to train a hierarchical neural
network?

Option 1: Train each submodel
separately

Training focuses on specific model and its input
X Need training data for each submodel

X Submodel isn’t aware of the overall task

10

Jointly Training the Model

How to train a hierarchical neural
network?

Option 2: Train entire model jointly

Need training data only for the overall task
Submodels get optimized for the overall task

X For large models, feedback from final prediction
may get lost (vanishing gradient problem)

11

25

\v\tvx’\' — Un |
f“+ 1 @-
O___a ! !_q, ?TLOL\,CJ\OV\
(g wh
r(2 Q) @

O,k, ~\ &f»\\wv-uc\ '\""5"""\“‘,

Overview

s Hierarchical neural networks

= Type prediction e—
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

= Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

13

Types in Dynamic Progr. Langs.

= Dynamically typed languages:
Extremely popular

s Lack of type annotations:
0 Type errors
o Hard-to-understand APls
o Poor IDE support

14

Example

def find match(color) :
candidates = get_colors()
for candidate in candidates:
1f color == candidate:
return color
return None

def get_colors() :
return ["red", '"blue", "green'"]

15

Gradual Typing

= Annotate some code locations with
types

0 E.g., parameter types and return types of some

functions only
s Gradual type checker
o Warn about inconsistencies

o lgnores missing information

16 -

1

Gradual Typing

= Annotate some code locations with
types

0 E.g., parameter types and return types of some

functions only
s Gradual type checker
o Warn about inconsistencies

o lgnores missing information

But: Annotating types is painful

16 -

How to Add Type Annotations?

= Option 1: Static type inference

0 Guarantees type correctness, but very limited

= Option 2: Dynamic type inference

0 Depends on inputs and misses types

= Option 3: Probabilistic type prediction

o Models learned from existing type annotations

17

Overview of TypeWriter

vy Program

LN Neural type

prediction

Lightweight
static analysis

PL info
Probabilistic type prediction

Type vector

Static type Feedback-directed
checker search

Search for consistent types

l Program with
type annotations

18

Extracting NL and PL Info

= NL information

o Names of functions and arguments

0 Function-level comments

s PL information
o Occurrences of the to-be-typed code element

o Types made available via imports

19

Example

def find match(color) :

Args:

color (str): color to match on and return
candidates = get_colors()
for candidate in candidates:

i1f color == candidate:

return color

return None

def get_colors() :
return ['"red", '"blue", ''green']

20 -

1

Example

Names: find_match, color
def find match(color) : ames d ’

mwmn

Args:
color (str): color to match on and return

candidates = get_cclors()\ Function-level
for candidate in candidates:

if color == candidate: comment

return color

return None
4~ Names: get colors
def get_colors() : 9

return ['"red", '"blue", ''green']

20 -

Example

def find match(color) :

mwmn

Args:
color (str): color to match on and return

i Occurrences of
candidates =,géE_colors ()
for candigéte in candidates: parameters
if color == candidate:
return color
return None
“\\ Return

def get_colors() : statements

return ["red", "blw

20 -

{J\iararc(,\'\c,i Mkfm(V‘L&WOT‘L &or 'gft r\‘LcLKC‘L\‘OV\
Sea A vector s —b‘r’» veu\ef‘

C.OO'“L —_— 2 NN -—) (— '
f‘-o\ams .
LMQQA&]—‘ RNN ':\ a
‘oll.v\.“\&trs : @_’ D")\ ‘)
COW(\A s Q\M»\otd&v W&Q(w&f

e wor b

A’VO»; Lab\k SQ&*W“K

‘l’av S

Output: Type Vector

= Type prediction as a classification
problem

= Output of the model: Type vector

o One element for each of top-1000 types
o During training:

All zero, except for the correct type
o During prediction:

Interpreted as probability distribution over types

22

Training the Model

= Training data: Existing type
annotations

o Multi-million line code base

0 Some types (=~ 20-50%) already annotated

s Learns to predict missing types from
existing annotations

23

Example of Predictions

def find match(color) :

Args:

color (str): color to match on and return
candidates = get_colors()
for candidate in candidates:

i1f color == candidate:

return color

return None

def get_colors() :
return ['"red", '"blue", ''green']

24 -

1

Example of Predictions

— Predictions:
def find match(color) : _
o int, str, bool

Args:
color (str): color to match on and return

mwmn

candidates = get_colors()

for candidate in candidates: Predictions: str,
if color == candidate: .
return color Optlonal[str],
return None W—____ — None

def get_colors() :
return ["red", '"blue", "green"] Predictions:

\/ List[str],
List[Any], str

24 -

2

Challenges

= Imprecision
0 Some predictions are wrong

1 Developers must decide which suggestions to
follow

= Combinatorial explosion

0 For each missing type: One or more suggestions

0 Exploring all combinations:
Practically impossible

25

Overview of TypeWriter

vy Program

LN Neural type

prediction

Lightweight
static analysis

PL info
Probabilistic type prediction

Type vector

Static type Feedback-directed
checker search

Search for consistent types

l Program with
type annotations

26

Searching for Consistent Types

s Top-k predictions for each missing type
o Filter predictions using gradual type checker

o E.g., pyre and mypy for Python, flow for
JavaScript

= Combinatorial search problem

o For type slots S and k predictions per slot:
(k + 1)!°l possible type assignments

27 -

1

Searching for Consistent Types

s Top-k predictions for each missing type
o Filter predictions using gradual type checker

o E.g., pyre and mypy for Python, flow for
JavaScript

= Combinatorial search problem

o For type slots S and k predictions per slot:

|—_> (k + 1)!°l possible type assignments
Too large to explore exhaustively! - .-

Feedback Function

= Goal: Minimize missing types without
introducing type errors

s Feedback score (lower is better):

U+ Nmissing + W * Nerrors

28 -

1

Feedback Function

= Goal: Minimize missing types without
introducing type errors

s Feedback score (lower is better):

U+ Nmissing + W * Nerrors

N7

Default: v = 1, w = 2,
i.e., higher weight for errors

28 -

Search Strategies

s Optimistic vs. pessimistic

v N
Add top-most predicted Add one
type everywhere and type at a
then remove types time

= Greedy vs. non-greedy

v ~a

If score decreases, Backtrack to avoid
keep the type local minima

Example

def find match(color) :

Args:

color (str): color to match on and return
candidates = get_colors()
for candidate in candidates:

i1f color == candidate:

return color

return None

def get_colors() :
return ['"red", '"blue", ''green']

30 -

1

Example

— Predictions:
def find match(color) : _
o int, str, bool

Args:
color (str): color to match on and return

mwmn

candidates = get_colors()

for candidate in candidates: Predictions: str,
if color == candidate: .
return color Optlonal[str],
return None W—____ — None

def get_colors() :
return ["red", '"blue", "green"] Predictions:

\/ List[str],
List[Any], str

30 -

2

Results

s Neural model
0 Precision: 58-73% in top-1, 50-92% in top-5
0 Recall: 50-58

s Model and search together

0 Best strategy adds 72% of type-correct types
and completely annotates 44% of files

= In use at Facebook

o Thousands of suggested types accepted by
developers with minimal effort

31

Overview

s Hierarchical neural networks

= Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

= Representing code changes <—
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

32

Representing Code Changes

s Source code evolves all the time

s Goal: Represent code changes to
make predictions

0 What should be the commit message?
0 Does the change fix a bug?

o Does the change introduce a bug?

33

gc 2 Ve : Necuvitw

e T Commit - — =~ —
e o
Cc V\BO. ’ dord) " .HA'
- (O\MM;"' WAL S
(&
_ ‘H\,Lravo‘ﬁ\‘cm‘ }a)
'\"\b. /\ 0\\"’“’\“"'0" o |
=\

T 2 s Ve o
. 1 f)
: o} e 7 “9' ~
(come [or J&A
b

T \e N
o{'\ntf &:hs) :
| etk —
\/cc*'o' wo’d \‘cc"\‘o"
‘—er(}‘ é&, - @%Q\Q"’Qc}
e 9}(worels
NN ocenriony -

e we 93(

Data Extraction

= Each code change: Set of affected
files

= Each affected file: Set of hunks

o Hunk = consecutive lines of modified code
= Each hunk: Added and removed lines
= Each line: Sequence of code tokens

36

H'\U lfc(MCd f\w\d

cl«w:)cs 1= ,f\(_\

hael

—

[

JES==un N

yeetor

_,n/’

|

L

w;§\\\\

= ,_,CA“]

/

£l

ve U\'Of‘

!

owe Jor cldad
cody
o r'(V"‘O\l(A

o (& code

28

Comparison Layers

= Goal: Focus on changes in a file
= Given: Vector representation of
o Added code: ¢,
o Removed code: e,
= Set of comparison functions
0 E.g., element-wise subtraction

s Result: One vector that summarizes
all changes in a file

38

Training the Model

= Gather from version control system of
project

o Pairs of code change and commit message
o Evaluation with tens of thousands of pairs
= Train entire model jointly

= Once trained, use embeddings of code
changes for specific applications

40

Applications

= Predict commit message

0 Search for nearest neighbor of code change

and reuse it message
= Predict: Is a code change a bug fix?

o Relevant, e.g., to decide which code changes
to backport to older Linux kernel versions
= Just-in-time defect prediction

0 Useful to allocate quality assurance resources
(e.g., code reviews) to code changes

41

