
1

Analyzing Software using
Deep Learning

Reasoning about Types and Code Changes
with Hierarchical Networks

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

2

Overview

� Hierarchical neural networks

� Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

� Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

3

Motivation

� What if the input to a predictive model
consists of multiple parts that

� are too many to simply concatenate

� are not a sequence

� may each have a different structure?

4

Examples

� Document

� Lines of words

� Images

� Plots

� Evidence of program crash

� Stack trace

� Error message

� Information about the user (key-value pairs)

5

Examples (2)

� Program elements that have a type

� Code tokens

� Identifier names

� Comments associated with the function

� Commits to a code repository

� Code change

• Multiple code locations

� Commit messages

23

7

Hierarchical Neural Networks

� Neural model composed of submodels

� Aligned into a hierarchy

� E.g., a tree where inputs arrive at leaves

� Information propagates from leaves to the root

� Prediction based on summarized
information at root

8

Submodels

� Each submodel: Encode specific part
of input

� Different submodels may be different
kinds of neural networks
� E.g., feedforward network for some input,

RNN for some other input

24

10

Jointly Training the Model

How to train a hierarchical neural
network?

Option 1: Train each submodel
separately

3 Training focuses on specific model and its input

7 Need training data for each submodel

7 Submodel isn’t aware of the overall task

11

Jointly Training the Model

How to train a hierarchical neural
network?

Option 2: Train entire model jointly

3 Need training data only for the overall task

3 Submodels get optimized for the overall task

7 For large models, feedback from final prediction
may get lost (vanishing gradient problem)

25

13

Overview

� Hierarchical neural networks

� Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

� Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

14

Types in Dynamic Progr. Langs.

� Dynamically typed languages:
Extremely popular

� Lack of type annotations:
� Type errors

� Hard-to-understand APIs

� Poor IDE support

15

Example

def find_match(color):
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

16 - 1

Gradual Typing

� Annotate some code locations with
types

� E.g., parameter types and return types of some

functions only

� Gradual type checker

� Warn about inconsistencies

� Ignores missing information

16 - 2

Gradual Typing

� Annotate some code locations with
types

� E.g., parameter types and return types of some

functions only

� Gradual type checker

� Warn about inconsistencies

� Ignores missing information

But: Annotating types is painful

17

How to Add Type Annotations?

� Option 1: Static type inference
� Guarantees type correctness, but very limited

� Option 2: Dynamic type inference
� Depends on inputs and misses types

� Option 3: Probabilistic type prediction

� Models learned from existing type annotations

18

Overview of TypeWriter

Type vector

Program

Program with
type annotations

Search for consistent types

Feedback-directed
search

Static type
checker

Probabilistic type prediction

Neural type
prediction

Lightweight
static analysis

NL info

PL info

19

Extracting NL and PL Info

� NL information

� Names of functions and arguments

� Function-level comments

� PL information

� Occurrences of the to-be-typed code element

� Types made available via imports

20 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

20 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Names: find match, color

Names: get colors

Function-level
comment

20 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Occurrences of
parameters

Return
statements

26

22

Output: Type Vector

� Type prediction as a classification
problem

� Output of the model: Type vector

� One element for each of top-1000 types

� During training:

All zero, except for the correct type

� During prediction:

Interpreted as probability distribution over types

23

Training the Model

� Training data: Existing type
annotations

� Multi-million line code base

� Some types (≈ 20-50%) already annotated

� Learns to predict missing types from
existing annotations

24 - 1

Example of Predictions

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

24 - 2

Example of Predictions

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Predictions:
int, str, bool

Predictions: str,
Optional[str],
None

Predictions:
List[str],
List[Any], str

25

Challenges

� Imprecision

� Some predictions are wrong

� Developers must decide which suggestions to

follow

� Combinatorial explosion

� For each missing type: One or more suggestions

� Exploring all combinations:

Practically impossible

26

Overview of TypeWriter

Type vector

Program

Program with
type annotations

Search for consistent types

Feedback-directed
search

Static type
checker

Probabilistic type prediction

Neural type
prediction

Lightweight
static analysis

NL info

PL info

27 - 1

Searching for Consistent Types

� Top-k predictions for each missing type

� Filter predictions using gradual type checker

� E.g., pyre and mypy for Python, flow for

JavaScript

� Combinatorial search problem
� For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

27 - 2

Searching for Consistent Types

� Top-k predictions for each missing type

� Filter predictions using gradual type checker

� E.g., pyre and mypy for Python, flow for

JavaScript

� Combinatorial search problem
� For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

Too large to explore exhaustively!

28 - 1

Feedback Function

� Goal: Minimize missing types without
introducing type errors

� Feedback score (lower is better):
v · nmissing + w · nerrors

28 - 2

Feedback Function

� Goal: Minimize missing types without
introducing type errors

� Feedback score (lower is better):
v · nmissing + w · nerrors

Default: v = 1, w = 2,
i.e., higher weight for errors

29

Search Strategies

� Optimistic vs. pessimistic

� Greedy vs. non-greedy

Add top-most predicted
type everywhere and
then remove types

Add one
type at a
time

If score decreases,
keep the type

Backtrack to avoid
local minima

30 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

30 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Predictions:
int, str, bool

Predictions: str,
Optional[str],
None

Predictions:
List[str],
List[Any], str

31

Results

� Neural model

� Precision: 58-73% in top-1, 50-92% in top-5

� Recall: 50-58

� Model and search together
� Best strategy adds 72% of type-correct types

and completely annotates 44% of files

� In use at Facebook

� Thousands of suggested types accepted by

developers with minimal effort

32

Overview

� Hierarchical neural networks

� Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

� Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

33

Representing Code Changes

� Source code evolves all the time

� Goal: Represent code changes to
make predictions

� What should be the commit message?

� Does the change fix a bug?

� Does the change introduce a bug?

27

36

Data Extraction

� Each code change: Set of affected
files

� Each affected file: Set of hunks

� Hunk = consecutive lines of modified code

� Each hunk: Added and removed lines

� Each line: Sequence of code tokens

28

38

Comparison Layers

� Goal: Focus on changes in a file

� Given: Vector representation of

� Added code: ea

� Removed code: er

� Set of comparison functions

� E.g., element-wise subtraction

� Result: One vector that summarizes
all changes in a file

40

Training the Model

� Gather from version control system of
project

� Pairs of code change and commit message

� Evaluation with tens of thousands of pairs

� Train entire model jointly

� Once trained, use embeddings of code
changes for specific applications

41

Applications

� Predict commit message

� Search for nearest neighbor of code change

and reuse it message

� Predict: Is a code change a bug fix?

� Relevant, e.g., to decide which code changes

to backport to older Linux kernel versions

� Just-in-time defect prediction
� Useful to allocate quality assurance resources

(e.g., code reviews) to code changes

