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Overview

� Token vocabulary problem

� Pre-trained token embeddings

� Joint embedding space for NL & PL

Recommended papers:

� ”Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

� ”Big Code != Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

� ”Deep Code Search”, ICSE, 2018
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Tokens: Building Blocks of Code

// From Angular.js

browserSingleton.startPoller(100,

function(delay, fn) {

setTimeout(delay, fn);

});

� Source code = Sequence of tokens

� Reasoning about large code snippets:
Need to reason about tokens first
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Kinds of Tokens

Two categories of tokens

� Fixed by programming language

� Operators, parentheses, keywords, etc.

� Chosen by developers

� Identifiers, literals
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Vocabulary Problem

� Large code corpus:
Huge number of tokens

� Difficult to represent and reason about

� Relevant for

� Models that take code as an input

� Models that produce code as an output
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Vocabulary Problem (2)

”Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

Size of vocabulary for 14k projects
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Vocabulary Problem (2)

”Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

Size of vocabulary for 14k projects

Almost 12
million tokens!



6 - 3

Vocabulary Problem (2)

”Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

Size of vocabulary for 14k projects

Replacing
comments and
strings with
placeholders
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Vocabulary Problem (2)

”Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

Size of vocabulary for 14k projects

Split identifiers
based on
camelCase and
snake case
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Vocabulary Problem (2)

”Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

Size of vocabulary for 14k projects

For all ways of
modeling the
vocabulary:
Linear growth
when new
projects are
added
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Handling the Vocabulary Problem

Abstract
tokens

� Much

smaller

vocabulary

� Looses

valuable

informa-

tion

Consider N
most
frequent
tokens only

� Covers large

fraction of all

tokens

� Out-of-

vocabulary

problem

Embed tokens
into a vector
space

� Constant vector

size when code

corpus grows

� Non-trivial to

obtain an

effective

embedding
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Keeping Top-N Tokens

� Observation: Vocabulary has a
“long-tail” distribution

� Few tokens occur frequently

� Many other tokens occur infrequently

� Keep only N most frequent tokens

� Represent others as special
“unknown” token
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Keeping Top-N Tokens (2)

Top-N approach on ≈ 100k JavaScript files

”Context2Name: A Deep Learning-Based Approach to Infer Natural Variable
Names from Usage Contexts” (Bavishi et al., 2018)
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Overview

� Token Vocabulary problem

� Pre-trained token embeddings

� Joint embedding space for NL & PL

Recommended papers:

� ”Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

� ”Big Code != Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

� ”Deep Code Search”, ICSE, 2018
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From Tokens to Vectors

� Given a vocabulary of tokens:
How to represent a token as a vector?

� Neural models require vectors as
inputs

� Need a mapping E : V → Rk

� V .. vocabulary

� k .. length of vector representation
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One-hot Encoding

� Give each t ∈ V a unique index

� Vector is all zeros, except for the index
of t, which is one

E(t)i =

{
1 if index of t is i

0 otherwise

� Length k of vectors equals vocabulary
size |V |
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Token Embeddings

� Map tokens to a vector space

� Semantically similar tokens have a similar

vector representation

� Size k of vectors is much smaller than |V |



19

Example: Token Embeddings
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End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

� Option 1: Learn embedding function E jointly with

the rest of the model

� Embeddings fit the ultimate application

� Option 2: Pre-train a separate embedding model E

� Powerful model designed just for this purpose
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End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

� Option 1: Learn embedding function E jointly with

the rest of the model

� Embeddings fit the ultimate application

� Option 2: Pre-train a separate embedding model E

� Powerful model designed just for this purpose

Focus for rest of this lecture
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Word2vec

� Popular technique for learning
embeddings (originally, for natural
languages)

� Learn embeddings from context in
which a word occurs
� ”You shall know a word by the company it

keeps”

� Context: Surrounding words in sentences
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Out-of-Vocabulary Problem

� During training: Finite set of tokens

� During prediction: New tokens may
appear

� Represented as special “unknown” token

� Loss of valuable information
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Embeddings of Subtokens

� Idea to address out-of-vocabulary
problem:

� Learn embedding of subtokens

� Previously unseen tokens are likely to

composable of the subtokens

� Example

� setHeight decomposed into subtokens set

and Height
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FastText

� Decompose tokens into their
character n-grams

� n-gram: n consecutive characters

� Learn embedding for each n-gram

� Using Word2vec-like skip-gram model

� E(t) =
∑

s∈n-gram sub-tokens of t
E(s)
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Byte Pair Encoding (BPE)

Compute subtokens from data

� Start with one subtoken per character
� Repeat:

� Find pair of current subtokens that most frequently

appear consecutively

� Merge pair into a new subtoken

� Result: Ordered list L of merge operations
� Represent a token t by

� splitting t into characters and

� merging the characters into subtokens using
operations as ordered in L
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Handling the Vocabulary Problem

Abstract
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� Much
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Overview

� Token Vocabulary problem

� Pre-trained token embeddings

� Joint embedding space for NL & PL

Recommended papers:

� ”Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

� ”Big Code != Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

� ”Deep Code Search”, ICSE, 2018
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NL & PL Information

� Software is not just code

� Many natural language artifacts

� Applications of reasoning about both
PL and NL information

� NL-to-code search

� Predict or check comments

� Learn from API documentation
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Joint Embedding Space

� How to reason about PL tokens and
NL words together?

� Idea: Learn embedding that maps
both PL tokens and NL words into a
single vector space

� Goal: Related tokens and words are close-by

� Model learns how to related PL and NL

information to each other
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Deep Code Search

NL
query

Code
snippet

Learning-based
Code Search Engine
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Deep Code Search

NL
query

Code
snippet

Learning-based
Code Search Engine

“read an object from an xml”
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Deep Code Search

NL
query

Code
snippet

Learning-based
Code Search Engine

“read an object from an xml”
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Deep Code Search

NL
query

Code
snippet

Learning-based
Code Search Engine

“read an object from an xml”
Note: Similar terms,
but not the same
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Training the Model

� Train with pairs of code snippet c and
NL query d

� Matching pairs (c, d+)

� Non-matching pairs (c, d−)

� Loss function:

”Deep Code Search” (Gu et al., 2018)
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Results

� Model trained on 18 million Java
methods and their comments (as a
surrogate for NL queries)

� Evaluation with 50 questions from
stackoverflow.com

� Correct code snippet predicted at position 1 or

2 for most queries


