Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2022

Overview

= Token vocabulary problem
= Pre-trained token embeddings
= Joint embedding space for NL & PL

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

m 'Deep Code Search”, ICSE, 2018

Tokens: Building Blocks of Code

= Source code = Sequence of tokens

= Reasoning about large code shippets:
Need to reason about tokens first

// From Angular.js
browserSingleton.startPoller (100,
function(delay, fn) ({
setTimeout (delay, fn);

})

Kinds of Tokens

Two categories of tokens
m Fixed by programming language
0 Operators, parentheses, keywords, etc.

m Chosen by developers

0 ldentifiers, literals

Vocabulary Problem

= Large code corpus:
Huge number of tokens

= Difficult to represent and reason about
= Relevant for
o Models that take code as an input

o Models that produce code as an output

Vocabulary Problem (2)

Size of vocabulary for 14k projects

12M
O Full

Split
E’ ‘ttt "EtE" .

oM

6M

3M

oM

0% 25% 50% 75% 100%

"Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019) 6-1

Vocabulary Problem (2)

Size of vocabulary for 14k projects

12M O Full <«—Almost 12
Split A
[} jak) ugppn million tokens!
9M

6M

3M

oM

0% 25% 50% 75% 100%

"Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

6 -

2

Vocabulary Problem (2)

Size of vocabulary for 14k projects

12M
O Full

Split
D ‘tt ‘ "Et E"

Replacing

<4
comments and
strings with

placeholders

oM

6M

3M

oM

0% 25% 50% 75% 100%

"Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

6 -

3

Vocabulary Problem (2)

Size of vocabulary for 14k projects

12M
O Full

Split
D ‘tt ‘ "Et E"

oM

oM Split identifiers
based on
M camelCase and
<4
shake_case
oM

0% 25% 50% 75% 100%

"Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

6 -

4

Vocabulary Problem (2)

Size of vocabulary for 14k projects

12M
O Full

Split
D ‘tt ‘ "Et E"

For all ways of

M modeling the
vocabulary:
o Linear growth
when new
3M]
projects are
oM added

0% 25% 50% 75% 100%

"Modeling Vocabulary for Big Code Machine Learning” (Babii et al., 2019)

6 -

5

Handling the Vocabulary Problem

Abstract
tokens

s Much
smaller
vocabulary

m Looses
valuable
Informa-

tion

Consider N Embed tokens

most into a vector
frequent space
tokens only 4 Constant vector
m Covers large size when code
fraction of all COrpus grows
tokens m Non-trivial to
m Out-of- obtain an
vocabulary effective

problem embedding

7

51

Agg’{(&o“-\'wq 'GL(V\
7
‘t‘\ t [t S .E"l '.e? T
N f ¢ r ,.' .
‘\ c" o~ ~: - = '\",\ - "'") a’gg—“’\oe‘\ou
\ v 7 { .
\/ 0£~ v v
Q A *L
‘R‘ts\«i‘\' :

7%5& ackoy by \nd Jﬁ A oleen

0(0’\ (‘ﬂdbp
| =

k‘ o o\ ,M&.\\{, € LA«:N\

(,\V\L = ,F\((. VCG»A ()

{

OR: '.)Q ({d—cw‘kpw I=

———

:o(,h;ul-\‘&'cr =

~

lee

J

all) 9
ol frer ol frer ()

52

word Ofuoﬁ‘of ?o&lw'k&\"' aoy\rdor (Hera ...

CO\AS\'S\"V\“’ 'R(\MIM:V\n

;(, (,(A\.t \ = mu\ %
hwe = &i\L.n’.&r}k\

i (ida s)
‘d2 = 1d4.id3 ()

53

Keeping Top-N Tokens

= Observation: Vocabulary has a
“long-tail” distribution

o Few tokens occur frequently
o Many other tokens occur infrequently
s Keep only N most frequent tokens

= Represent others as special
“unknown” token

11

Keeping Top-N Tokens (2)

Top-N approach on ~ 100k JavaScript files

|(Vout|

Percentage of unique
names covered

Percentage of
names covered

1,000
5,000
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

0.40
1.99
3.97
7.95
11.92
15.89
19.87
23.84
27.81
31.79
35.76
39.74

63.19
75.07
79.48
33.82
86.38
88.16
89.56
90.74
91.62
92.41
93.19
93.98

"Context2Name: A Deep Learning-Based Approach to Infer Natural Variable
Names from Usage Contexts” (Bavishi et al., 2018) 12

Handling the Vocabulary Problem

Abstract
tokens

s Much
smaller
vocabulary

m Looses
valuable
Informa-

tion

Consider N Embed tokens

most into a vector
frequent space
tokens only 4 Constant vector
m Covers large size when code
fraction of all COrpus grows
tokens m Non-trivial to
m Out-of- obtain an
vocabulary effective

problem embedding 13

Overview

= Token Vocabulary problem
= Pre-trained token embeddings <+—
= Joint embedding space for NL & PL

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

m "Deep Code Search”, ICSE, 2018 14

From Tokens to Vectors

= Given a vocabulary of tokens:
How to represent a token as a vector?

= Neural models require vectors as
inputs

= Need a mapping £ : V — RF
o V' .. vocabulary

0 k .. length of vector representation

15

One-hot Encoding

= Give each ¢ € VV a unique index

= Vector iIs all zeros, except for the index
of ¢, which Is one
B(t), { 1 if index_ of tis
0 otherwise
= Length % of vectors equals vocabulary
size |V|

16

EK °‘\M.r L(«

\/ = %i,‘|('\n;°‘g
e (') = L 0.0,0])

c ()= L0,n.0.0)
e (V) = Lovonol

c (ia) = L0,0.0.1]

54

Token Embeddings

= Map tokens to a vector space

0 Semantically similar tokens have a similar

vector representation

1 Size k of vectors is much smaller than |V

18

Example: Token Embeddings

20
ontainer
15 ¢
vrapper
10+
5_
O €]
alert
—> dist Jst $">%error
7220 -15 -10 -5 0 5 10 15 20

19

End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

m Option 1: Learn embedding function E jointly with
the rest of the model

0 Embeddings fit the ultimate application
m Option 2: Pre-train a separate embedding model £

0 Powerful model designed just for this purpose

20 -

1

End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

m Option 1: Learn embedding function E jointly with
the rest of the model

0 Embeddings fit the ultimate application

m Option 2: Pre-train a separate embedding model £

0 Powerful model designed just for this purpose

Focus for rest of this lecture

20 -

Word2vec

= Popular technique for learning
embeddings (originally, for natural
languages)

= Learn embeddings from context in
which a word occurs

o "You shall know a word by the company it
keeps”

0 Context: Surrounding words in sentences

21

Vt\r\'ov\“' 1 - C(')W'L‘V\\AO\AS (E% 0'(, Umds
?\'Ld'\‘(x\' ‘+°“~¢V' &&\m Oow"-t)(*
b
i U \U_‘\L/-)ﬂ t,
tixa \:\ 7)
’E]+‘LD
, N vt
\\\,\‘w* \OBJ"‘ \""ob\h“ L °"‘*f"""
xal .
Comvk sie =l ‘

(CROW)
=20 (E%)
3)
: . b
'__Li‘ c{-‘i
(witbond)

_\) = s‘b&‘wc\x (V"")

55

A
L] ’U
T D Eian
" o~
:‘,\qu—x s dolera “-l;;-«-'l

Y = SO&AM&K (V' "‘\

56

Gdr&w> W awkwlo\:‘\,l

Dvnu. wrodel (s 300d ot s ek
Wie Widoln \"VK‘ Qs QM‘btdd.'v) (&Of ‘L;

Out-of-Vocabulary Problem

= During training: Finite set of tokens

= During prediction: New tokens may
appear

o Represented as special “unknown” token

0 Loss of valuable information

26

Embeddings of Subtokens

= Idea to address out-of-vocabulary
problem:

o Learn embedding of subtokens

0 Previously unseen tokens are likely to
composable of the subtokens

= Example

0 setHeight decomposed into subtokens set
and Height

27

FastText

s Decompose tokens into their
character n-grams

0 n-gram: n consecutive characters
= Learn embedding for each n-gram

0 Using Word2vec-like skip-gram model

= [(t) = 2 E(s)

s&n-gram sub-tokens of ¢

28

EYMM‘\LL

n=3%
\\

i¢ g'jmwts

58

Byte Pair Encoding (BPE)

Compute subtokens from data

m Start with one subtoken per character
m Repeat:

0 Find pair of current subtokens that most frequently
appear consecutively

0 Merge pair into a new subtoken
m Result: Ordered list L of merge operations
m Represent a token ¢ by

0 splitting ¢ into characters and

0 merging the characters into subtokens using
operations as ordered in L

30

Handling the Vocabulary Problem

Abstract
tokens

s Much
smaller
vocabulary

m Looses
valuable
Informa-

tion

Consider N Embed tokens

most into a vector
frequent space
tokens only 4 Constant vector
m Covers large size when code
fraction of all COrpus grows
tokens m Non-trivial to
m Out-of- obtain an
vocabulary effective

problem embedding 32

Overview

= Token Vocabulary problem
= Pre-trained token embeddings
= Joint embedding space for NL & PL <+—

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

m "Deep Code Search”, ICSE, 2018 33

NL & PL Information

= Software is not just code
= Many natural language artifacts

= Applications of reasoning about both
PL and NL information

7 NL-to-code search
0 Predict or check comments

0 Learn from APl documentation

34

Joint Embedding Space

= How to reason about PL tokens and
NL words together?

= Idea: Learn embedding that maps
both PL tokens and NL words into a
single vector space

o Goal: Related tokens and words are close-by

0 Model learns how to related PL and NL

iInformation to each other

35

Deep Code Search

NL Learning-based
«[I-1aVA Code Search Engine

Code
shippet

36 -

y

Deep Code Search

NL Learning-based
V3" Code Search Engine

“read an object from an xml”

Code
shippet

36 -

Deep Code Search

NL Learning-based Code
query | “ellciclclic=g s shippet

“read an object from an xml”

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;

36 -

Deep Code Search

NL Learning-based Code
V3" Code Search Engine snippet

a Note: Similar terms
‘read an object from an xmI” put not the same

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;

36 -

(9V8fvt'n)
Cosnwne N
Codle 5 L E—— Deserf
veestor Svw \““"45 et
(ode zmbto(fiivj De Scrzj;: L
M'\wo'f(«- 2\ VJ

[l

COO‘L v0L 06/”-4‘)“'*"’"‘

59

New“ﬁl vmbé(/(r
cole —
vector
h w A ﬂa‘./\wc‘ \
1, t ts ..

(ode : ¥ o&, Aole s

OS2

5\‘\M~L-

— Auscr f'{'\O\A vectom

T
\ WA foe\,\\,? “(

T 17
BAYY h|
L4

2 I R S

V. WL Wy .

:‘}LSC'J\P"\;D\A : Sc@(\,—luue, /0'(, uwob

60

Training the Model

= Train with pairs of code snippet c and
NL query d

1 Matching pairs (¢, dy)
1 Non-matching pairs (¢,d_)

s Loss function:

L(0) = Z max(0, € — cos(c,d+) + cos(c, d-))
<C,D+,D->€P

"Deep Code Search” (Gu et al., 2018)

39

Results

= Model trained on 18 million Java
methods and their comments (as a
surrogate for NL queries)

= Evaluation with 50 questions from
stackoverflow.com

o Correct code snippet predicted at position 1 or
2 for most queries

40

