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Overview

= Token vocabulary problem
= Pre-trained token embeddings
= Joint embedding space for NL & PL

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

m 'Deep Code Search”, ICSE, 2018



Tokens: Building Blocks of Code

= Source code = Sequence of tokens

= Reasoning about large code shippets:
Need to reason about tokens first

// From Angular.js
browserSingleton.startPoller (100,
function(delay, fn) ({
setTimeout (delay, fn);

})



Kinds of Tokens

Two categories of tokens
m Fixed by programming language
0 Operators, parentheses, keywords, etc.

m Chosen by developers

0 ldentifiers, literals



Vocabulary Problem

= Large code corpus:
Huge number of tokens

= Difficult to represent and reason about
= Relevant for
o Models that take code as an input

o Models that produce code as an output



Vocabulary Problem (2)

Size of vocabulary for 14k projects
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Vocabulary Problem (2)
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Vocabulary Problem (2)

Size of vocabulary for 14k projects
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Vocabulary Problem (2)

Size of vocabulary for 14k projects
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Handling the Vocabulary Problem

Abstract
tokens

s Much
smaller
vocabulary

m Looses
valuable
Informa-

tion

Consider N Embed tokens

most into a vector
frequent space
tokens only 4 Constant vector
m Covers large size when code
fraction of all COrpus grows
tokens m Non-trivial to
m Out-of- obtain an
vocabulary effective

problem embedding

7



51

Agg’{(&o“-\'wq 'GL(V\
7
‘t‘\ t [ t S .E"l '.e? T
N f ¢ r ,.' .
‘\ c" o~ ~: - = '\",\ - "'") a’gg—“’\oe‘\ou
\ v 7 { .
\/ 0£~ v v
Q A *L
‘R‘ts\«i‘\' :



7%5& ackoy by  \nd Jﬁ A oleen

0(0’\ (‘ﬂdbp
| =

k‘ o o\ ,M&.\\{, € LA«:N\

(,\V\L = ,F\(( . VCG»A ()

{

OR: '.)Q ({d—cw‘kpw I=

———

:o(,h;ul-\‘&'cr =

~

lee

J

all ) 9
ol frer ol frer ()

52

word Ofuoﬁ‘of ?o&lw'k&\"' aoy\rdor (Hera ...



CO\AS\'S\"V\“’ 'R(\MIM:V\n

;(, (,(A\.t \ = mu\ %
hwe = &i\L.n’.&r}k\

i (ida s )
‘d2 = 1d4.id3 ()

53



Keeping Top-N Tokens

= Observation: Vocabulary has a
“long-tail” distribution

o Few tokens occur frequently
o Many other tokens occur infrequently
s Keep only N most frequent tokens

= Represent others as special
“unknown” token

11



Keeping Top-N Tokens (2)

Top-N approach on ~ 100k JavaScript files

|(Vout|
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"Context2Name: A Deep Learning-Based Approach to Infer Natural Variable
Names from Usage Contexts” (Bavishi et al., 2018) 12



Handling the Vocabulary Problem
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Overview

= Token Vocabulary problem
= Pre-trained token embeddings <+—
= Joint embedding space for NL & PL

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020

m "Deep Code Search”, ICSE, 2018 14



From Tokens to Vectors

= Given a vocabulary of tokens:
How to represent a token as a vector?

= Neural models require vectors as
inputs

= Need a mapping £ : V — RF
o V' .. vocabulary

0 k .. length of vector representation

15



One-hot Encoding

= Give each ¢ € VV a unique index

= Vector iIs all zeros, except for the index
of ¢, which Is one
B(t), { 1 if index_ of tis
0 otherwise
= Length % of vectors equals vocabulary
size |V|

16
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Token Embeddings

= Map tokens to a vector space

0 Semantically similar tokens have a similar

vector representation

1 Size k of vectors is much smaller than |V

18



Example: Token Embeddings

20
ontainer
15 ¢
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alert
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7220 -15 -10 -5 0 5 10 15 20

19



End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

m Option 1: Learn embedding function E jointly with
the rest of the model

0 Embeddings fit the ultimate application
m Option 2: Pre-train a separate embedding model £

0 Powerful model designed just for this purpose

20 -
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End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

m Option 1: Learn embedding function E jointly with
the rest of the model

0 Embeddings fit the ultimate application

m Option 2: Pre-train a separate embedding model £

0 Powerful model designed just for this purpose

Focus for rest of this lecture
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Word2vec

= Popular technique for learning
embeddings (originally, for natural
languages)

= Learn embeddings from context in
which a word occurs

o "You shall know a word by the company it
keeps”

0 Context: Surrounding words in sentences

21
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Out-of-Vocabulary Problem

= During training: Finite set of tokens

= During prediction: New tokens may
appear

o Represented as special “unknown” token

0 Loss of valuable information

26



Embeddings of Subtokens

= Idea to address out-of-vocabulary
problem:

o Learn embedding of subtokens

0 Previously unseen tokens are likely to
composable of the subtokens

= Example

0 setHeight decomposed into subtokens set
and Height

27



FastText

s Decompose tokens into their
character n-grams

0 n-gram: n consecutive characters
= Learn embedding for each n-gram

0 Using Word2vec-like skip-gram model

= [(t) = 2 E(s)

s&n-gram sub-tokens of ¢

28
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Byte Pair Encoding (BPE)

Compute subtokens from data

m Start with one subtoken per character
m Repeat:

0 Find pair of current subtokens that most frequently
appear consecutively

0 Merge pair into a new subtoken
m Result: Ordered list L of merge operations
m Represent a token ¢ by

0 splitting ¢ into characters and

0 merging the characters into subtokens using
operations as ordered in L

30



Handling the Vocabulary Problem
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Overview

= Token Vocabulary problem
= Pre-trained token embeddings
= Joint embedding space for NL & PL <+—

Recommended papers:
m "Distributed representations of words and phrases and
their compositionality”, NIPS, 2013

m "Big Code = Big Vocabulary - Open-Vocabulary Models
for Source Code”, ICSE, 2020
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NL & PL Information

= Software is not just code
= Many natural language artifacts

= Applications of reasoning about both
PL and NL information

7 NL-to-code search
0 Predict or check comments

0 Learn from APl documentation

34



Joint Embedding Space

= How to reason about PL tokens and
NL words together?

= Idea: Learn embedding that maps
both PL tokens and NL words into a
single vector space

o Goal: Related tokens and words are close-by

0 Model learns how to related PL and NL

iInformation to each other

35



Deep Code Search

NL Learning-based
«[I-1aVA Code Search Engine

Code
shippet

36 -
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Deep Code Search

NL Learning-based
V3" Code Search Engine

“read an object from an xml”

Code
shippet
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Deep Code Search

NL Learning-based Code
query | “ellciclclic=g s shippet

“read an object from an xml”

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;

36 -



Deep Code Search

NL Learning-based Code
V3" Code Search Engine snippet

a Note: Similar terms
‘read an object from an xmI”  put not the same

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;
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Training the Model

= Train with pairs of code snippet c and
NL query d

1 Matching pairs (¢, dy)
1 Non-matching pairs (¢,d_)

s Loss function:

L(0) = Z max(0, € — cos(c,d+) + cos(c, d-))
<C,D+,D->€P

"Deep Code Search” (Gu et al., 2018)
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Results

= Model trained on 18 million Java
methods and their comments (as a
surrogate for NL queries)

= Evaluation with 50 questions from
stackoverflow.com

o Correct code snippet predicted at position 1 or
2 for most queries
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