Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2020
8

Plan for Today

s Introduction
=z A Bit of Scheme «——
s Evaluation Order

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function
o Remaining expressions: Arguments
= Examples:

(+ 3 4) ((+ 3 4))

10 -

1

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function
o Remaining expressions: Arguments
= Examples:

(+ 3 4) ((+ 3 4))

Applies + function
to 3 and 4.
Evaluates to 7.

10 -

Function Application

= Pair of parentheses: Function
application

o First expression inside: Function

o Remaining expressions: Arguments

= Examples:
(+ 3 4) ((+ 3 4))
Applies + function Tries to call 7 with zero
to 3 and 4. arguments.

Evaluates to 7. Gives runtime error. , ;

Creating Functions

= Evaluating a lambda expression yields
a function

o First argument to 1ambda: Formal parameters
o Remaining arguments: Body of the function
= Example:

(lambda (x) (*x x x))

11 -

Creating Functions

= Evaluating a lambda expression yields
a function

o First argument to 1ambda: Formal parameters
o Remaining arguments: Body of the function
= Example:

(lambda (x) (* x x))

Yields the “square” function

11

-2

Bindings

= Names bound to values with let
o First argument: List of name-value pairs

10 Second argument: Expressions to be evaluated
in order

= Example:

(let ((a 3)
(b 4)
(square (lambda (x) (*x x xX)))
(Plus +))
(sgrt (plus (square a) (square b))))

12 -

1

Bindings

= Names bound to values with let
o First argument: List of name-value pairs

10 Second argument: Expressions to be evaluated
in order

= Example:

(let ((a 3)
(b 4)
(square (lambda (x) (*x x xX)))
(Plus +))
(sgrt (plus (square a) (square b))))

Yields 5.0

12 -

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond
((<32) 1)
(if (<2 3) 45) ((< 4 3) 2)

(else 3))

13 -

1

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond
((<32) 1)
(if (<2 3) 45) ((< 4 3) 2)

Yields 4 (else 3))

13 -

Conditional Expressions

= Simple conditional expression with if
0 First argument: Condition

0 Second/third argument: Value returned if
condition is true/false

= Multiway conditional expression with

cond
0 Examples: (cond Yields 3
((<32) 1)
(1f (<2 3) 45) ((< 4 3) 2)

Yields 4 (else 3))

13 -

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

(define min (lambda (a b) (if (<kab) ab)))

14 -

1

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

Evaluates to 5 if a Iis positive;
runtime type error otherwise.

(define min (lambda (a b) (if (<kab) ab)))

14 -

Dynamic Typing

= Types are determined and checked at
runtime

= Examples:

(if (>a0) (+2 3) (+ 2 "foo"))

Evaluates to 5 if a Iis positive;
runtime type error otherwise.

(define min (lambda (a b) (if (<kab) ab)))

Implicitly polymorphic:
Works both for integers and floats.

14 -

Quiz: Functions in Scheme

Which of the following yields 9?

; Program 1
((lambda (x) (* x x)) 3)

; Program 2
(- (+12 3) (+ 2 4))

; Program 3
(9)

; Program 4
((lambda (xy) (-xy)) (+100) (-4 2))

Please vote via llias.

15 -

1

Quiz: Functions in Scheme

Which of the following yields 9?
; Program 1
((Lambda (x) (* x x)) 3) ¢/

; Program 2
(- (+123) (+24)) ¢

; Program 3
(9) X

; Program 4
(lambda (xy) (-xy)) (+100) (-42)) X

Please vote via llias.

15 -

Lists

s Central data structure with various
operations

0 car extracts first element
0 cdr extracts all elements but first

0 cons joins a head to the rest of a list

= Examples:

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))

16 -

1

Lists

s Central data structure with various
operations

. "Quote” to
0 car extracts first element orevent
0 cdr extracts all elements but first interpreter
from
0 cons joins a head to the rest of a Iist‘ evaluating
= Examples: '/ (i.e., a literal)

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))

16 -2

Lists

s Central data structure with various
operations

. "Quote” to
0 car extracts first element orevent
0 cdr extracts all elements but first interpreter
from
0 cons joins a head to the rest of a Iist‘ evaluating
= Examples: '/ (i.e., a literal)

(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))
Yields 2

16 -3

Lists

s Central data structure with various
operations

_ “Quote” to
0 car extracts first element prevent
o cdr extracts all elements but first interpreter
from
1 cons joins a head to the rest of alist gy 51yating
. Examples: (i.e., a literal)
(car " (2 3 4)) (cdr ’G)) (cons 2 ' (3 4))

Yields 2 Yields (3 4)

16-4

Lists

s Central data structure with various
operations

| “Quote” to
0 car extracts first element prevent
0 cdr extracts all elements but first interpreter
from
1 cons joins a head to the rest of alist gy 51yating
. I.e., a literal)
« Examples: '/ (le.,a
(car ' (2 3 4)) (cdr ' (2 3 4)) (cons 2 ' (3 4))
Yields 2 Yields (3 4) Yields (2 3 4)

16 -5

Assignments

= Side effects via
0 set ! for assignment to variables
0 set—car! for assigning head of list
0 set—cdr! for assigning tail of list

s Example: (et ((x2)
(1" (ab)))
(set! x 3)
(set—car! 1 ' (c d))
(set—cdr! 1 ' (e))
(cons x 1))

17 -

1

Assignments

= Side effects via
0 set ! for assignment to variables
0 set—car! for assigning head of list
0 set—cdr! for assigning tail of list

s Example: (et ((x2)
(1" (ab)))
(set! x 3)
(set—car! 1 ' (c d))
(set—cdr! 1 ' (e))
(cons x 1))

Yields (3 (c d) e)

17 -

Sequencing

= Cause interpreter to evaluate multiple
expressions one after another with
begin

= Example:

(let
((n "there"))
(begin
(display "hi ")
(display n)))

18 -

1

Sequencing

= Cause interpreter to evaluate multiple
expressions one after another with
begin

= Example:

(let
((n "there"))
(begin
(display "hi ")
(display n))) Prints "hi there”

18 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n)
(do ((0 (+i1))
(a 0 b)
b1l (+ab)))
((=1n) b)
(display b)
(display " "))) 5)

19 -

1

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) ts initial val
b1 (+ab))) m its initial value
((=1n) b) m expression to compute
(display b) next value

(display " "))) 5)

19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do (10 (+11)) m specify a new variable
(a 0 b) e
b1l (+ab))) m its initial value
—((=1n) b) m expression to compute
(display b)

Termination (4icp1ay " ™)) 5) next value

condition and
expression to

be returned
19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) e
b1 (+ab))) m its initial value
I_’((= i n) b) m expression to compute
I (display b) next value
Term!rfatlon (display "oy) 5)
condition and Body of

expression to
be returned

the loop

19 -

lteration

= Several forms of loops, e.g., with do
= Example:

((lambda (n) List of triples that each
(do ((1 0 (+11)) m specify a new variable
(a 0 b) e
b1 (+ab))) m its initial value
I_’((= i n) b) m expression to compute
Terminati (display b) next value
erm!rfatlon (display " "))) 5)
COI‘IdItIO.n and Body of
expression to the loop

be returned : : :
Computes first n Fibonacci numbers ., -

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval

= Example:
(eval (cons '+ (list "2 '3)))

20 -

1

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval Constructs a list from

the given arguments
= Example:

(eval (cons '+ (list "2 '3)))

20 -

Programs as Lists

= Programs and lists: Same syntax

0 Both are S-expressions: String of symbols with
balanced parentheses

= Construct and manipulate an
unevaluated program as a list

s Evaluate with eval Constructs a list from

the given arguments
= Example:

(eval (cons '+ (list "2 '3)))

Yields 5

20 -

