
1

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2020

Programming Paradigms

Syntax (Part 6)



2

Overview

� Specifying syntax

� Regular expressions

� Context-free grammars

� Scanning

� Parsing

� Top-down parsing

� Bottom-up parsing



3

Bottom-up Parsing

� LR(k) parsers
� Left-to-right scanning, Right-most derivation, k

tokens look-ahead

� Difficult to do by hand

� Mostly based on automatically
generated table



4

Shift-reduce Algorithm

� Repeat until all tokens read and all
symbols reduced to start symbol:

� Shift (i.e., read) input tokens

� Try to reduce a group of symbols into a single

non-terminal



27



6

Table-based LR Parsing

� Two tables
� Action table:

state × T→ reduce/shift/accept/error

� Goto table:
state × N→ state

� Stack of symbol/state pairs

� Record of what has been seen in the past



7 - 1

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2



7 - 2

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

Action table



7 - 3

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

Goto table



7 - 4

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

s means
shift to
some state



7 - 5

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

r means reduce
using some
production



7 - 6

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

Accept input
(i.e., done with
parsing)



7 - 7

Example: LR(1) Table

State a b c d e EOF S T R

s0 s1
s1 s3 2
s2 s5 s6 4
s3 r3 r3
s4 s7
s5 s8
s6 r4
s7 acc.
s8 r2 r2

No entry
means error



8 - 1

Table-based LR(1) Parsing

stack.push(EOF, 0);
nextToken = lookAhead();
repeat
s = state on top of stack
if action[s, nextToken] = shift s’
stack.push(nextToken, s’);
nextToken = lookAhead();

else if action[s, nextToken] = reduce x -> y1 .. ym
pop m pairs from stack
s’ = state on top of stack
push(x, goto[s’, x])

else if action[s, nextToken] = accept
accept and return

else error()



8 - 2

Table-based LR(1) Parsing

stack.push(EOF, 0);
nextToken = lookAhead();
repeat
s = state on top of stack
if action[s, nextToken] = shift s’
stack.push(nextToken, s’);
nextToken = lookAhead();

else if action[s, nextToken] = reduce x -> y1 .. ym
pop m pairs from stack
s’ = state on top of stack
push(x, goto[s’, x])

else if action[s, nextToken] = accept
accept and return

else error()

Stack hold roots of partial
trees found so far



8 - 3

Table-based LR(1) Parsing

stack.push(EOF, 0);
nextToken = lookAhead();
repeat
s = state on top of stack
if action[s, nextToken] = shift s’
stack.push(nextToken, s’);
nextToken = lookAhead();

else if action[s, nextToken] = reduce x -> y1 .. ym
pop m pairs from stack
s’ = state on top of stack
push(x, goto[s’, x])

else if action[s, nextToken] = accept
accept and return

else error()

Reduce partial
trees into a
non-terminal
by applying a
rule



8 - 4

Table-based LR(1) Parsing

stack.push(EOF, 0);
nextToken = lookAhead();
repeat
s = state on top of stack
if action[s, nextToken] = shift s’
stack.push(nextToken, s’);
nextToken = lookAhead();

else if action[s, nextToken] = reduce x -> y1 .. ym
pop m pairs from stack
s’ = state on top of stack
push(x, goto[s’, x])

else if action[s, nextToken] = accept
accept and return

else error()

Read
another
token



8 - 5

Table-based LR(1) Parsing

stack.push(EOF, 0);
nextToken = lookAhead();
repeat
s = state on top of stack
if action[s, nextToken] = shift s’
stack.push(nextToken, s’);
nextToken = lookAhead();

else if action[s, nextToken] = reduce x -> y1 .. ym
pop m pairs from stack
s’ = state on top of stack
push(x, goto[s’, x])

else if action[s, nextToken] = accept
accept and return

else error()

All subtrees
reduced to
start symbol



9

How to Get the Table?

� Using a “characteristic finite-state
machine” computed from the grammar

� Details differ for different kinds of LR
parsers

� SLR (simple LR)

� LALR (look-ahead LR)

� Full-LR

� Beyond the scope of this course



10 - 1

Quiz: Parsing

Please vote via Ilias.

Which of these statements is true?

� Recursive descent builds a parse tree from the

bottom up.

� The k in LR(k) stands for k tokens look-ahead.

� PREDICT sets are used to compute FIRST and

FOLLOW sets.

� The stack of a top-down parser contains the

symbols expected in the future.



10 - 2

Quiz: Parsing

Please vote via Ilias.

Which of these statements is true?

� Recursive descent builds a parse tree from the

bottom up.

� The k in LR(k) stands for k tokens look-ahead.

� PREDICT sets are used to compute FIRST and

FOLLOW sets.

� The stack of a top-down parser contains the

symbols expected in the future.



11

Overview

� Specifying syntax

� Regular expressions

� Context-free grammars

� Scanning

� Parsing

� Top-down parsing

� Bottom-up parsing 4


