
1

Analyzing Software using
Deep Learning

Reasoning about Types and Code Changes
with Hierarchical Networks (Part 2)

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart
Summer 2020

2

Overview

� Hierarchical neural networks

� Type prediction
Based on “TypeWriter: Neural Type Prediction with
Search-based Validation” by Pradel et al., 2020

� Representing code changes
Based on “CC2Vec: Distributed Representations of
Code Changes” by Hoang et al., 2020

3

Types in Dynamic Progr. Langs.

� Dynamically typed languages:
Extremely popular

� Lack of type annotations:
� Type errors

� Hard-to-understand APIs

� Poor IDE support

4

Example

def find_match(color):
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

5 - 1

Gradual Typing

� Annotate some code locations with
types

� E.g., parameter types and return types of some

functions only

� Gradual type checker

� Warn about inconsistencies

� Ignores missing information

5 - 2

Gradual Typing

� Annotate some code locations with
types

� E.g., parameter types and return types of some

functions only

� Gradual type checker

� Warn about inconsistencies

� Ignores missing information

But: Annotating types is painful

6

How to Add Type Annotations?

� Option 1: Static type inference
� Guarantees type correctness, but very limited

� Option 2: Dynamic type inference
� Depends on inputs and misses types

� Option 3: Probabilistic type prediction

� Models learned from existing type annotations

7

Overview of TypeWriter

Type vector

Program

Program with
type annotations

Search for consistent types

Feedback-directed
search

Static type
checker

Probabilistic type prediction

Neural type
prediction

Lightweight
static analysis

NL info

PL info

8

Extracting NL and PL Info

� NL information

� Names of functions and arguments

� Function-level comments

� PL information

� Occurrences of the to-be-typed code element

� Types made available via imports

9 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

9 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Names: find match, color

Names: get colors

Function-level
comment

9 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Occurrences of
parameters

Return
statements

27

11

Output: Type Vector

� Type prediction as a classification
problem

� Output of the model: Type vector

� One element for each of top-1000 types

� During training:

All zero, except for the correct type

� During prediction:

Interpreted as probability distribution over types

12

Training the Model

� Training data: Existing type
annotations

� Multi-million line code base

� Some types (≈ 20-50%) already annotated

� Learns to predict missing types from
existing annotations

13 - 1

Example of Predictions

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

13 - 2

Example of Predictions

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Predictions:
int, str, bool

Predictions: str,
Optional[str],
None

Predictions:
List[str],
List[Any], str

14

Challenges

� Imprecision

� Some predictions are wrong

� Developers must decide which suggestions to

follow

� Combinatorial explosion

� For each missing type: One or more suggestions

� Exploring all combinations:

Practically impossible

15

Overview of TypeWriter

Type vector

Program

Program with
type annotations

Search for consistent types

Feedback-directed
search

Static type
checker

Probabilistic type prediction

Neural type
prediction

Lightweight
static analysis

NL info

PL info

16 - 1

Searching for Consistent Types

� Top-k predictions for each missing type

� Filter predictions using gradual type checker

� E.g., pyre and mypy for Python, flow for

JavaScript

� Combinatorial search problem
� For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

16 - 2

Searching for Consistent Types

� Top-k predictions for each missing type

� Filter predictions using gradual type checker

� E.g., pyre and mypy for Python, flow for

JavaScript

� Combinatorial search problem
� For type slots S and k predictions per slot:

(k + 1)|S| possible type assignments

Too large to explore exhaustively!

17 - 1

Feedback Function

� Goal: Minimize missing types without
introducing type errors

� Feedback score (lower is better):
v · nmissing + w · nerrors

17 - 2

Feedback Function

� Goal: Minimize missing types without
introducing type errors

� Feedback score (lower is better):
v · nmissing + w · nerrors

Default: v = 1, w = 2,
i.e., higher weight for errors

18

Search Strategies

� Optimistic vs. pessimistic

� Greedy vs. non-greedy

Add top-most predicted
type everywhere and
then remove types

Add one
type at a
time

If score decreases,
keep the type

Backtrack to avoid
local minima

19 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

19 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

Predictions:
int, str, bool

Predictions: str,
Optional[str],
None

Predictions:
List[str],
List[Any], str

20

Results

� Neural model

� Precision: 58-73% in top-1, 50-92% in top-5

� Recall: 50-58% in top-1, 69-72% in top-5

� Model and search together
� Best strategy adds 72% of type-correct types

and completely annotates 44% of files

� In use at Facebook

� Thousands of suggested types accepted by

developers with minimal changes

