Performance Problems You Can Fix:
A Dynamic Analysis of Memoization Opportunities

Luca Della Toffola

Department of Computer Science
ETH Zurich, Switzerland

Abstract

Performance bugs are a prevalent problem and recent re-
search proposes various techniques to identify such bugs.
This paper addresses a kind of performance problem that of-
ten is easy to address but difficult to identify: redundant com-
putations that may be avoided by reusing already computed
results for particular inputs, a technique called memoization.
To help developers find and use memoization opportunities,
we present Memoizelt, a dynamic analysis that identifies
methods that repeatedly perform the same computation. The
key idea is to compare inputs and outputs of method calls
in a scalable yet precise way. To avoid the overhead of com-
paring objects at all method invocations in detail, Memoizelt
first compares objects without following any references and
iteratively increases the depth of exploration while shrinking
the set of considered methods. After each iteration, the ap-
proach ignores methods that cannot benefit from memoiza-
tion, allowing it to analyze calls to the remaining methods in
more detail. For every memoization opportunity that Mem-
oizelt detects, it provides hints on how to implement mem-
oization, making it easy for the developer to fix the perfor-
mance issue. Applying Memoizelt to eleven real-world Java
programs reveals nine profitable memoization opportunities,
most of which are missed by traditional CPU time profil-
ers, conservative compiler optimizations, and other existing
approaches for finding performance bugs. Adding memoiza-
tion as proposed by Memoizelt leads to statistically signifi-
cant speedups by factors between 1.04x and 12.93x.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Measurement Techniques; D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.5 [Soft-
ware Engineering]: Testing and Debugging

[Copyright notice will appear here once ’preprint’ option is removed.]

Michael Pradel

Department of Computer Science
TU Darmstadt, Germany

Thomas R. Gross

Department of Computer Science
ETH Zurich, Switzerland

General Terms Algorithms, Experimentation, Languages,
Performance, Measurement

Keywords Memoization, caching, profiling, performance
bugs

1. Introduction

Performance bugs are a prevalent problem [23} 26, |50] but
existing approaches to identify, debug, and fix them are lim-
ited. The two most widely used approaches are CPU time
profiling [[19] and automated compiler optimizations. CPU
time profiling reports code that is “hot” but cannot determine
whether this code contains optimization potential and how
to use this potential. Even worse, profilers may even mislead
developers to refactor code with little or no performance im-
provements [29]. Automated compiler optimizations trans-
form code into more efficient code but often fail to discover
latent performance problems because a compiler of its static,
over-approximated, view of the program.

Existing research approaches address these limitations
through dynamic analyses that search for symptoms of per-
formance bugs, such as unnecessarily high memory and
CPU consumption [28|, 143} 46|, inefficient loops [31]], and
responsiveness problems [34]. By focusing on particular bot-
tleneck symptoms, these approaches help developers under-
stand the cause of a problem but not necessarily how to ad-
dress it. In other words, the performance bugs may be rele-
vant but not actionable. Recent work focuses on performance
problems that developers are likely to fix [32]] but is limited
to a loop-related performance bug pattern. Overall, the chal-
lenge of pointing developers to actionable performance bugs
still waits to be addressed.

To illustrate the challenges of finding easy to address
performance bottlenecks, consider Listing [I] which illus-
trates a performance bug in the document converter tool
suite Apache POI [1]]. The method in the example analyzes
a given string and returns a boolean that indicates whether
the string matches one of several possible date formats. The
method gets called frequently in a typical workload, possi-
bly repeating the same computation many times. An easy
way to optimize the method is memoization, i.e., to store the
results from earlier calls of the method and to reuse these

2015/8/24

I class DateUtil {

2 private static final Pattern date ptrn = Pattern.compile(..);
3 private static String lastFormat;

4 private static boolean cachedResult;

5 static boolean isADateFormat (String format) {

6 if (format.equals(lastFormat)

7 return cachedResult;

8 String £ = format;

9 StringBuilder sb = new StringBuilder(f.length());
10 for (int i = 0; 1 < f.length(); it++) {

11 // [..] copy parts of f to sb

12 }

13 f = sb.toString();

14 // [..] process f using date patterns

15 cachedResult = date_ptrn.matcher(f) .matches();

16 return cachedResult;

17 }

18}

Listing 1: Memoization opportunity in Apache POI that
can be used by adding the highlighted code.

results when the same input reappears. The highlighted code
in the figure shows a simple implementation of memoiza-
tion, which leads to speedups ranging from 7% up to 25% in
different workloads we experiment with.

Unfortunately, a developer may miss this opportunity
with CPU time profiling because the method is one of many
hot methods. Likewise, the opportunity is missed by exist-
ing compilers [13}[47] because the method has side effects.
Existing work on finding repeated computations [30] also
misses this opportunity because that work focuses on call
sites that always produce the same output, not on methods
where multiple input-output pairs occur repeatedly.

To help developers find and fix performance bugs, this
paper presents Memoizelt, an iterative dynamic analysis to
discover methods that may benefit from memoization. The
key idea is to systematically compare the inputs and outputs
of different invocations of the same method with each other.
If a method repeatedly obtains the same inputs and produces
the same outputs, it is reported as a memoization candidate.
In addition, Memoizelt reports hints on how to implement
memoization for this method in an efficient way. The hints
help the developer to implement a cache but ultimately,
it is the developer’s responsibility to implement a correct
and efficient cache. Memoizelt strikes a balance between
compiler optimizations, which automatically transform the
code but must guarantee that the transformation preserves
the semantics of the program, and existing profilers, which
focus on hot but not necessarily optimizable code.

An important insight of our work is that methods may
benefit from memoization even though they have side ef-
fects. The cost for considering methods despite side effects
is that Memoizelt may report methods that cannot easily be
memoized because it would change the program’s seman-
tics. We show that this problem is manageable in practice
and that Memoizelt reports valid memoization opportunities
missed by all existing approaches we are aware of.

A major challenge for comparing the inputs and outputs
of method calls in an object-oriented language is the high

cost of comparing complex objects. We address this chal-
lenge with an iterative profiling algorithm that repeatedly
executes a program while iteratively increasing the depth up
to which it explores the object graph. The approach starts by
comparing objects at a shallow level, without following their
references, and prunes methods that certainly cannot benefit
from memoization. Then, the approach re-executes the pro-
gram to analyze the remaining methods at a deeper level.
This process continues until each method has been found to
be either not memoizable or has been fully explored. The
iterative approach guarantees to report the same memoiza-
tion opportunities as a heavyweight (and prohibitive) anal-
ysis that compares all method calls with each other in full
detail. As a result, Memoizelt can analyze real-world Java
programs with complex heap structures in reasonable time.

We evaluate Memoizelt by applying it to eleven real-
world Java programs. In eight of these programs, the ap-
proach finds at least one previously unknown memoization
opportunity that results in a statistically significant speedup.
For example, Memoizelt reports the opportunity in Figure T]
and suggests to add a single-element global cache, as shown
in the highlighted code. We have reported this fix to the
Apache POI developers and they have modified their code
accordingly Adding the caches proposed by Memoizelt
preserves the semantics of the program and reduces the pro-
gram’s execution time by a factor between 1.04x and 1.27x
using the profiling input, and gives up to 12.93x speedup
with other inputs. Memoizelt reports a ranked list of memo-
ization opportunities, and it reports these beneficial opportu-
nities as the first, second, or third method for the respective
program. In contrast, traditional CPU time profiling reports
the methods that contain these opportunities behind many
other methods without suggesting any program fixes. Based
on our reports, four of the detected memoization opportuni-
ties have already been used by the respective developers.

In summary, this paper contributes the following:

e Profiling of memoization opportunities. We present the
first profiler that focuses on opportunities for method-
level caching. The profiler allows developers to find easy
to implement optimizations that are difficult to detect
with existing profiling approaches.

e [terative refinement of dynamic analysis. We present an
algorithm that repeatedly executes a program to itera-
tively increase the degree of detail of a dynamic analysis
while shrinking the set of program locations to analyze.
The algorithm iteratively refines the set of memoization
candidates, making the profiling approach applicable to
large programs.

e Profile-based cache suggestions. We present a technique
that gives hints on implementing memoization.

I Bug 55611 in the Apache-POI bug database.

2015/8/24

e Empirical evaluation. We implement the approach into a
practical tool and show that it effectively finds memoiza-
tion opportunities in widely used Java programs.

Our implementation and all data required to reproduce
our results are publicly available at [3]].

2. Overview and Example

This section illustrates the key ideas of our approach with
a self-contained example. Figure [Ia] shows a program that
repeatedly calls two methods, compute and append. One of
them, compute, redundantly performs a complex computa-
tion that can be avoided through memoization. The method
computes a result that depends only on the given argu-
ment, and calling the method multiple times with equivalent
arguments yields equivalent results. In contrast, the other
method, append, cannot be memoized because it logs mes-
sages into a writer and because it increments a counter at
each call. A static or dynamic analysis that conservatively
searches for memoization opportunities [[13}47], misses the
opportunity in compute for two reasons. First, the method
has side effects because it creates a new object that escapes
from compute. In general, memoizing a method with side ef-
fects may change the semantics of the program. Second, the
method’s return value has a different object identity at ev-
ery call. In general, memoizing such a method may change
the semantics because the program may depend on object
identities. In the given program, however, the side effects
of compute are redundant because the created Result ob-
jects are structurally equivalent and the program is obliv-
ious of object identities. Therefore, memoizing the results
of compute improves performance while preserving the pro-
gram’s semantics.

A key insight of our work is that a method may benefit
from memoization even though it has side effects and even
though the object identities of its inputs and outputs vary
across calls. Instead of conservatively searching for mem-
oization opportunities that can certainly be applied without
affecting the semantics, we consider a method m as a poten-
tial memoization opportunity if all of the following memo-
ization conditions hold:

e (MC1) The program spends a non-negligible amount of
time in m.

e (MC2) The program repeatedly passes structurally equiv-
alent inputs to m, and m repeatedly produces structurally
equivalent outputs for these inputs. (We formally define
“structurally equivalent” in Section [3.2])

e (MC3) The hit ratio of the cache will be at least a user-
defined minimumE] This condition ensures that adding a
cache will lead to savings in time because the time saved

2The hit ratio of a cache is the number of times that a result can be reused
over the total number of cache lookups. We use 50% as the default minimum
hit ratio.

by reusing already computed results outweighs the time
spent for maintaining the cache.

Memoizelt detects performance bugs that can be ad-
dressed through memoization with a dynamic analysis that
checks, for each method that is called in the analyzed pro-
gram execution, whether conditions MC1 to MC3 hold. To
check for MC1, Memoizelt uses a state of the art CPU time
profiler to identify methods where a non-negligible amount
of time is spent. To check for MC2, Memoizelt records the
inputs and outputs of methods to identify methods that re-
peatedly take the same input and produce the same output.
To check for MC3, Memoizelt estimates the hit ratio that
a cache would have if the developer added memoization to
a method. This estimate is based on the inputs and outputs
observed in the execution.

To implement this idea, we must address two challenges.
First, we must define which inputs and outputs of a method
call to consider. Second, we must address the problem that
the inputs and outputs of a call may involve complex heap
structures that are too large to record in full detail for each
call.

Challenge 1: Inputs and outputs A conservative approach
to detect memoization opportunities must consider all values
that a method execution depends on as the call’s input, and
all side effects and the return value of the call as the call’s
output. In this work, we deliberately deviate from this con-
servative approach to detect memoization opportunities in
methods that have redundant side effects. As input to a call,
Memoizelt considers the arguments given to the method, as
well as those parts of the call’s target object that influence
the method’s execution. As output of a call, Memoizelt con-
siders the call’s return value. These definitions of input and
output may ignore some state that a method depends on and
ignore some side effects that a method may have. E.g., in ad-
dition to method arguments and the target object, a method
may depend on state reachable via static fields and on the
state of the file system. Furthermore, a method may modify
state reachable from the passed arguments and the state of
the file system. Our hypothesis is that focusing on the in-
puts and outputs given above summarizes the behavior of
many real-world methods well enough to decide whether
these methods may benefit from memoization. Our experi-
mental results validate this hypothesis.

Challenge 2: Complex heap structures In object-oriented
programs, the inputs and outputs of method calls often in-
volve complex objects. Recording these objects, including
all other objects reachable from them, for each call does not
scale well to large programs. Consider the inputs and out-
puts of method append in Figure [Ta] Since we consider the
state of the call target as part of the input, a naive imple-
mentation of our approach would have to record the state
of 1ogger at lines [and [8] This state includes the writer
object that 10gger refers to, which in turn refers to various

2015/8/24

class Main {

First iteration (depth 1):

Input (target, arguments) Output (return value)

1
2 static void main() {
3 Main main = new Main();
4 Logger logger = new Logger(); Call
5 Result resl = main.compute (new Input(23));
boolean okl = logger.append(resl) ; compute (line[5)
7 Result res2 = main.compute (new Input(23));
8 boolean ok2 = logger.append(res2) ; append (line@
9 if (okl && ok2) System.out.println("done");
10 }
11 Result compute (Input inp) {
12 Result r = new Result();
13 // complex computation based on inp .
o Cptet o compute (line[7)
15 r.p.snd = ..

16 return r;
17 }

18 }

19 class Input {
20 int n;

append (line[8)

p .
some Pair

wr
Logger: ctr=0 some Writer , true
P)
Result some Pair

| Main | |Input: n=23|

| Main | |Input: n=23|

p .
some Pair

wr
Logger: ctr=1 some Writer , true
P .
Result some Pair

21 Input(int n) { this.n =n; }
22 }
23 class Result {

24 Pair p = new Pair(); . .

5} Second iteration (depth 2):

26 class Pair {

27 int fst;

5 int snd Call Input (target, arguments) Output (return value)

29}
30 class Logger {

compute (line[5)

| Main | , |Input: n=23| | Result |R>| Pair: fst=42, snd=23|

[Main |, [Input: n=23] [Result | pair: fst=42, snd=23]

31 Writer wr = ..;

32 int ctr = 0;

33 boolean append(res) { .

34 wr.write(ctr+": "+res); compute (hnem
35 ctrt++;

36 return true;

37 }
38 }

(a) Program with memoization opportunity.

Potential performance bug in method Main.compute (Input):

e Same input-output pair occurs twice.

e Suggestion: Add a global single-element cache

(c) Report produced by Memoizelt.

(b) Iterative input-output profiling.

| private static int key = INVALID_CACHE; // Global cache key
2 private static Result cache = null;
// Global cache value
3 Result compute (Input inp) {
4 if (key != INVALID_CACHE && key == inp.n) {

5 return cache;

6 } else {

7 Result r = new Result();

8 // complex computation based on inp
9 r.p.fst = ..

10 r.p.snd = ..

11 key = inp.n;

12 cache = r;

13 return cache;

14 }

(d) Method Main.compute (Input) with cache.

Figure 1: Running example.

other objects. In general, fully recording the state reachable
from an object may involve arbitrarily many other objects,
in the worst case, the entire heap of the program.

To address the challenge of recording large input and out-
put objects, Memoizelt uses an iterative analysis approach
that gradually refines the set of methods that are considered
as memoization candidates. The key idea is to repeatedly
execute the program, starting with an analysis that records
objects without following their references, and to iteratively

increase the level of detail of the recorded inputs and outputs
while pruning the methods to consider. After each iteration,
Memoizelt identifies methods that certainly fulfill the mem-
oization conditions MC2 and MC3, and methods that cer-
tainly miss a condition. Methods that miss a condition are
pruned and not considered in subsequent iterations.

Figure [T] illustrates the iterative profiling approach for
our running example. We illustrate the recorded objects as
heap graphs, where a node represents an object with its

2015/8/24

primitive fields, and where an edge represents a reference.
In the first iteration, Memoizelt records inputs and outputs
at depth 1, i.e., without following any references. E.g., the
output of the first call to compute is recorded as a Result
object that points to a not further analyzed pair object.
The information recorded at depth 1 allows Memoizelt to
decide that append cannot fulfill MC2 because there is no
recurring input-output pair. The reason is that the value of
ctr is 0 at line [6 but 1 at line [8] Note that Memoizelt
prunes method append without following the reference to the
Writer object, i.e., without unnecessarily exploring complex
heap structures.

After the first iteration, Memoizelt keeps compute in the
set of methods that may benefit from memoization and re-
executes the program for the second iteration. Now, Mem-
oizelt records inputs and outputs at depth 2, i.e., it follows
references from input and output objects but not references
from these references. The lower part of Figure[Tb|shows the
information recorded at depth 2. Memoizelt now completely
records all inputs and outputs of compute and determines
that both calls to compute have structurally equivalent in-
puts and outputs, i.e., the method fulfills MC2. Furthermore,
the method fulfills MC3 because memoizing the results of
compute would lead to a cache miss at the first call and a
cache hit at the second call, i.e., a hit ratio of 50%.

Since Memoizelt has fully explored all methods after two
iterations, it stops the analysis and reports compute as a po-
tential memoization opportunity (Figure [Ic). To help de-
velopers use this opportunity, Memoizelt suggests how to
implement memoization for every reported method. Based
on the analyzed execution, the approach suggests to add a
global single-element cache, i.e., to store the last observed
input and output in static fields of Main, and to reuse the al-
ready computed output if the input matches the most recently
observed input.

Figure[Id| shows an implementation of Memoizelt’s sug-
gestion. The optimized code has two additional static fields
key and cache that store the most recently computed result
and the corresponding input value inp.n. To avoid redun-
dantly recomputing the result, the optimized method reuses
the result whenever the same input value appears again. As a
result, the program in Figure [Ta| performs the complex com-
putation in compute only once.

3. Approach

This section describes Memoizelt, an approach to find mem-
oization opportunities through iterative profiling. The input
to Memoizelt is an executable program. The approach exe-
cutes the program multiple times while applying dynamic
analyses and reports performance bugs that can be fixed
through memoization. Memoizelt consists of four parts:

o Time and frequency profiling. This part executes the pro-
gram once and uses traditional CPU time profiling to

identify an initial set of methods that may benefit from
optimization (Section 3.1J).

® Input-output profiling. The main part of the analysis. It
repeatedly executes the program to identify memoizable
methods by analyzing the inputs and outputs of method
calls (Section [3.2).

e Clustering and ranking. This part summarizes the analy-
sis results and reports a ranked list of potential memoiza-
tion opportunities to the developer (Section [3.3).

® Suggest cache implementation. This part suggests for
each memoization opportunity how to implement a cache
for the respective method (Section [3.4).

The remainder of this section describes each part in detail.

3.1 Time and frequency profiling

The first part of Memoizelt uses state of the art CPU time
profiling to identify the set of initial memoization candi-
dates. We record, for each executed method m, the time
t,, spent in m (including time spent in callees) and the
number c¢,,, of calls. Furthermore, we also measure the to-
tal execution time #,,gy, Of the program. As the initial set
of memoization candidates, Memoizelt considers all meth-
ods that fulfill three requirements. First, the average execu-
tion time of the method is above a configurable minimum

. . t .
average execution time: —~ > t,in. Second, the relative
Cm
time spent in the method is above a configurable threshold:
t .
— > 7in. Third, the method must be called at least

tprgm
twice, ¢,, > 2. The first two requirements focus Memo-

izelt on methods that are worth optimizing (MC1). The third
requirement is a necessary condition for MC2 because a
method can repeat a computation only if the method is called
multiple times.

3.2 Input-output profiling

The core of Memoizelt is input-output profiling, which com-
putes a set of memoization candidates by comparing method
calls with each other to check whether MC2 and MC3 hold.
3.2.1 Representing input-output data

To detect method calls that perform computations redun-
dantly, Memoizelt records the input and output of each call.
For full precision, we could consider the following input and
output data:

¢ Input state (before the call):
= The state of the target object of the call. (*)
» The state of each argument passed to the call. (*)
= All heap state that is reachable via static fields.

= The environment state outside of the program’s heap,
e.g., file system and network state.

e QOutput state (after the call):

2015/8/24

= The four kinds of state listed above.
= The state of the return value of the call (if any). (*)

Recording all these inputs and outputs of each method call is
clearly infeasible, partly because it would not scale to large
programs and partly because acquiring the complete state is
practically impossible. Instead, Memoizelt focuses on those
parts of the input and output state that are marked with (*).
The rationale for focusing on these part of the input and out-
put state is twofold. First, we made the observation that these
parts of the state are sufficient to describe the relevant input
and output state for many real-world methods. E.g., most
methods read the arguments given to them, but only few
methods depend on modifiable heap state reachable through
static references. Second, recording some of the state that
is ignored by Memoizelt would lead to redundant informa-
tion that does not improve the precision of the approach.
E.g., recording the state of the target object after each call
would often replicate the state recorded for the same target
object before the next call. If a method is not memoizable
because it depends on the state of the target object, then
recording the target object’s state once as part of the input
is sufficient to identify this method as non-memoizable. To
compare input and output data of method calls, the analysis
flattens data items into a generic representation. The repre-
sentation describes the data itself and, in case of complex
object structures, the shape of the data item. The representa-
tion describes objects structurally and is independent of the
memory locations where objects are stored or other globally
unique identifiers of objects.

Definition 1 (Flattened data representation). A data item d
is flattened as follows:

e If d is a primitive value, it is represented by its string
representation.

o Ifdis an object, it is represented as a pair (R,,, F'), where

» R, identifies the object d using its runtime type R and
an identifier n that is unique within the flattened data
representation,

» F' is a list of flattened data representations; each
element of F represents the value of one of d’s fields.

o [fd is the null value, it is represented by NULL.

e [f d is an object that is already flattened in this represen-
tation and that has the identifier R, it is represented by
QR,,. We use this notation to deal with object structures
that have cyclic references.

To ensure that structurally equivalent objects have the
same flattened representation, each identifier is unique
within its flattened representation but not globally unique.
Furthermore, the list F' contains fields in a canonical order
based on alphabetic sorting by field name.

For example, the return values of the two calls of compute
in Figure 1| are both represented as:

(Resulty, [(Pairy, [42, 23])])

To illustrate how the representation deals with cyclic data
structures, consider a double-linked list built from instances
of 1tem with fields next, previous, and value. For a two-
element list with values 111 and 222, the flattened represen-
tation is:

(Itemy, [(Itema, [null, @Itemy, 222]), null, 111])

3.2.2 Comparing input-output data

The goal of input-output profiling is to evaluate MC2 and
MC3 by identifying memoizable methods where multiple
calls use the same input and produce the same output. To
achieve this goal, the analysis summarizes each call into a
tuple that represents the inputs and the output of the call.

Definition 2 (Input-output tuple). The input-output tuple of
acallisT = (digr,dp1, - - -, dpn, dret), where

® d;qr is the flattened representation of the target of the
call,

® dpi,...,dpy are the flattened representations of the pa-
rameters of the call, and

® d,o; is the flattened representation of the call’s return
value.

For each method m, the profiler builds a multiset 7, of
input-output tuples observed for m, called the ruple sum-
mary. The tuple summary maps each observed tuple to the
number of times the tuple has been observed during the pro-
gram execution. When the profiler observes a call of m, the
profiler creates an input-output tuple 7' and adds it to the
tuple summary 7,,.

Definition 3 (Tuple multiplicity). The multiplicity mult(T)
of a tuple T in the tuple summary T, is the number of
occurrences of T in T,

E.g., the call in line [5] of Figure [Ta] gives the following
input-output tuple:

T = ((Maina, []), (Inputi, [23]), (Result, [(Pair:, [42,23])]))

This tuple T has mult(T) = 2 because the two calls at
lines [5]and [7] have the same input-output tuple.

Based on the tuple summary for a method, Memoizelt
computes the potential hit ratio that a cache for the method
may have:

Definition 4 (Potential hit ratio). For a method m with tuple
summary T,,, the potential cache hit ratio is:

> (mult(T) — 1)

TETm

> mult(T)

TETm

hit,, =

The potential hit ratio indicates how often a method ex-
ecution could be avoided by reusing an already computed
result. The hit ratio estimates how profitable memoization
would be, based on the assumption that the return value for

2015/8/24

a particular input is stored in a cache when the input occurs
the first time and that the stored value is reused whenever
the same input occurs again. The ratio is an estimate, e.g.,
because it ignores that a cache may have to be invalidated, a
step that may reduce the number of hits.

Finally, Memoizelt identifies methods that potentially
benefit from caching:

Definition 5 (Memoization candidate). Method m is a mem-
oization candidate if hit,, > hpin, where R, is a config-
urable threshold.

By this definition, memoization candidates fulfill both
MC2 and MC3. In particular, a method that is called only
once is not a memoization candidate, because the potential
hit ratio of such a method is zero.

For the example in Figure the potential hit ratio of
compute is 50% because the call in line[5] must compute the
return value, but the call in line[7]can reuse the cached value.

3.2.3 Iterative refinement of memoization candidates

The approach described so far is effective but prohibitive for
programs with complex heap structures. The reason is that
recording input-output tuples requires the analysis to tra-
verse all objects reachable from the target, the arguments,
and the return value of a call. In the worst case, the analy-
sis may traverse the entire heap multiple times for each call.
To overcome this scalability problem, our analysis executes
the program multiple times, while iteratively increasing the
exploration depth up to which the analysis explores the ob-
ject graph, and while shrinking the set of memoization can-
didates. After each iteration, the analysis discards two sets
of methods: (i) methods that certainly do not satisfy Defi-
nition [5] and (ii) methods for which the input-output tuples
include all objects and all their transitive references. We say
that a method in the second set has been fully explored. To
support iterative refinement of memoization candidates, we
refine Definitions by including a bound k for the explo-
ration depth:

Definition 6 (k-bounded flattened data representation). The
k-bounded flattened data representation of a data item d is
the flattened representation of d, where only objects reach-
able from d via at most k references are included.

Similar to the above, we also adapt Definitions and[3]
to consider the exploration depth k. The k-bounded input-
output tuple of a call is a tuple T} where each element of
the tuple is now k-bounded. For a method m with a k-
bounded tuple summary 7, j, the k-bounded potential hit
ratio becomes hit,, ; and, a method m is a memoization
candidate at depth k if hit,, 1 > hiin.

For example, the previously illustrated call at line [5] of
Figure|la) gives the following k-bounded input-output tuple
fork =1:

T = ((Mainy, []), (Inputy, [23]), (Resulty, [(Pairy, [])]))

Input : Initial method candidate set C;,,;
Output Candidates set C, 7T,,, for each method m € C

1 k=1
2 C = Cinit
3 while (stopping condition != true) do
T ks -+ > Tmy e = 10profile(C, k)
Cne:vt = @
foreach method m € C do
hity, = compute Hit Ratio(Tm, k)
if hitm,k‘ > hmin then
L Cnezt =mU Cnert

10 C= Cnezt
1 | k=mnextDepth(k)

Algorithm 1: Iterative refinement of memoization candi-
dates.

o e 9 A

That is, in the k-bounded flattened data representation an
object that is not expanded is represented as the pair (R,
[1), where R is the runtime type and where n is the unique
identifier.

Based on these adapted definitions, Algorithm [I] summa-
rizes the iterative algorithm that refines the set of memoiza-
tion candidates. The algorithm starts with an initial set C;,,;¢
of memoization candidates provided by time and frequency
profiling (Section [3.1)). The outer loop of the algorithm iter-
atively increases the depth k and performs input-output pro-
filing at each depth, which returns a list of k-bounded tuple
summaries. Based on the tuple summaries, linesE]to[E]com-
pute the set C,,.,+ of methods to consider in the next iteration
as the set of methods with a sufficiently high hit ratio.

The algorithm iterates until one of the following stopping
conditions holds:

e all remaining memoization candidates in C have been
fully explored;

e there are no more memoization candidates that satisfy
MC3.

e a user-provided timeout is reached;

When reaching the stopping condition, the algorithm returns
the set C of memoization candidates, along with the tuple
summary 7Tp,.

For illustration, recall the example in Figure[Ib] Initially,
both methods compute and append are in the set C of candi-
dates. After the first iteration, the check at line [§] finds that
the hit ratio of append is zero, i.€., below the minimum hit ra-
tio, where as the hit ratio of compute is 50%, i.e., above the
threshold. Therefore, only compute remains as a candidate
for the second iteration. After the second iteration, compute
is still a memoization candidate and the algorithm stops be-
cause all calls have been fully explored.

2015/8/24

Properties of iterative refinement. 1t is important to note
that Algorithm |l|does not miss any memoization opportuni-
ties found by an exhaustive approach that analyzes all calls
with unbounded tuples. Specifically, the iterative refinement
of caching candidates provides two guarantees:

e If the analysis discards a method as non-memoizable at
depth k, it would never find that the method requires
memoization at a depth > k. That is, discarding methods
is sound. The reason is that once two tuples are found
to be different, this fact cannot be changed by a more
detailed analysis (that is, a larger k), i.e., C is guaranteed
to be a superset of Cpcpt.

* When a method is fully explored, the iterative approach
yields the same set of methods as with unbounded explo-
ration. This property is an immediate consequence of the
first property.

As a result, iteratively refining memoization candidates
reduces the complexity of input-output profiling without
causing the analysis to miss a potential memoization oppor-
tunity.

To increase the depth k, Algorithm [I| uses a function
nextDepth. This function must balance the cost of repeat-
edly executing the program against the ability to remove
methods from the candidate set. Smaller increments result in
more program executions, but they also allow the algorithm
to discard methods at a lower k. E.g., suppose a method can
be pruned from the candidate set at depth 2. If nextDepth
increases k from 1 to 10, the algorithm will unnecessarily
explore the method’s inputs and outputs at depth 10. In con-
trast, incrementing the depth by one allows the algorithm to
prune the method after exploring it at depth 2. In our ex-
periments we find that doubling the depth at each iteration,
ie., k=1,24, .., provides a reasonable tradeoff. To further
reduce the runtime of Algorithm [T} future work may adapt
nextDepth based on knowledge from previous iterations.
For example, the analysis could use larger increases of k if it
discovers that many methods have deep reference structures.

3.2.4 Field access profiling

The following describes a refinement of input-output pro-
filing that allows Memoizelt to discover additional mem-
oization opportunities and that improves the efficiency of
Memoizelt by reducing the size of flattened representations.
The approach described so far considers all objects reach-
able from the input and output objects as part of the in-
put and output, respectively. However, a method may read
and write only parts of these objects. E.g., suppose that in
Figure [Ta] class Main has a field £ that is not accessed by
compute. Recording the value of £ as part of the target ob-
ject of compute includes unnecessary data because the mem-
oizability of compute is independent of £. Even worse, sup-
pose that £’s value differs between the two redundant calls
in lines [3] and line [7} In this case, Memoizelt would not

report compute as a potential memoization opportunity be-
cause there would not be any repeated input-output tuple.

To avoid unnecessarily including fields of target objects
in input-output tuples, we refine input-output profiling by
considering only those fields of the target object as input to a
method m that are used in some execution of m. To compute
this set of input fields for a method m, Memoizelt executes
the program once before input-output profiling to track all
field reads and writes. A field f is an input field of m if there
exists at least one execution of m, including the callees of
m, that reads f before writing to it. Other fields, e.g., a field
that is never accessed in m or a field that is written by m
before being read by m are not part of m’s input.

To further reduce the overhead and improve the precision
of the analysis, a similar refinement can be applied for other
inputs and outputs, namely, method parameters and return
object. In practice, we have not observed many cases where
these additional refinements would improve precision.

3.3 Clustering and ranking

Memoizelt constructs reports about potential memoization
opportunities by clustering methods that should be inspected
together and by ranking methods. To cluster methods that
should be inspected together, Memoizelt creates a static call
graph and assigns two methods m; and my to the same
cluster if:

® m; is a direct caller of mo, or

® my is an indirect caller of ms and both methods are
defined in the same class.

The clustering approach is based on the observation that
a possibly memoizable method often calls other possibly
memoizable methods. In this case, a developer would waste
time by inspecting both methods separately. Instead, Memo-
izelt presents both methods together.

The analysis ranks method clusters based on an estimate
of their potentially saved time saved,,, = t,, * hit,, where
t,, is the total time spent in the method during the initial
time profiling run. For each cluster of methods, the analysis
selects the method with the highest potentially saved time
saved,, and sorts all clusters by the potentially saved time
of this method.

3.4 Suggesting a cache implementation

To use a memoization opportunity identified by Memoizelt,
a developer must implement a cache that stores previously
computed results of a method for later reuse. Choosing
an appropriate implementation is non-trivial and an inef-
ficiently implemented cache may even reduce the perfor-
mance of a program. In particular, a developer must take
the following decisions. First, how many input-output pairs
should the cache store? Common strategies include a single-
element cache that remembers the last input-output pair and
an associative map of bounded size that maps previously
observed inputs to their computation output. Second, what

2015/8/24

Table 1: Cache implementations suggested by Memoizelt.

Size Scope Description

Single Global Stores the most recently seen input and output of all calls
of the method, e.g., in static fields, and reuses the output
when the same input appears in consecutive calls.

Single Instance For each target object, stores the most recently seen
input and output of the method, e.g., in instance fields,
and reuses the output when the same input appears in
consecutive calls.

Multi Global Maps all inputs to the method to the computed output,
e.g., in a static map, and reuses outputs whenever a
previously seen input occurs.

Multi Instance For each target object, maps inputs to the method to the
computed output, e.g., in an map stored in an instance
field, and reuses outputs whenever an input has already
been passed to this instance.

should be the scope of the cache? Common strategies in-
clude a global cache that stores input-output pairs for all
instances of a class and an instance-level cache that stores
input-output pairs for each instance of the class.

To help developers decide on an appropriate cache im-
plementation, Memoizelt suggests a cache implementation
based on the observed execution. To this end, the approach
considers four common kinds of caches (Table [I). For each
possible cache implementation, the approach simulates the
effects of the cache on the analyzed execution based on the
recorded input/output tuples, and it computes the following
data:

e Hit ratio. How often can the method reuse a previously
computed result? Depending on the cache implementa-
tion, the hit ratio may differ from Definition 4} which as-
sumes that a global, multi-element cache is used.

e [nvalidation. Does the program have to invalidate the
cache because returning a cached value would diverge
from the method’s actual behavior? The cache simulator
determines that the cache needs to be invalidated if there
is a cache hit (i.e., a call’s input matches a stored input)
but the cached output does not match the recorded output
of the call.

¢ Size. For multi-element caches, how many input-output
pairs does the cache store, assuming that it never evicts
cache entries?

Based on these data, Memoizelt suggests a cache imple-
mentation with the following algorithm. First, the approach
removes all cache implementations that lead to a hit ratio be-
low a configurable threshold (default: 50%). Second, the ap-
proach picks from the remaining cache implementations the
top-most implementation as listed in Table[T} The table sorts
cache implementations by how simple they are to implement
and by the computational effort of inserting and looking up
input-output pairs. As a result, Memoizelt suggests the most
simple and most efficient cache implementation that yields a
large enough hit ratio.

4. Implementation

We implement Memoizelt into a performance bug detec-
tion tool for Java programs. The implementation combines
online and offline analysis and builds upon several exist-
ing tools. Time and frequency profiling (Section builds
on JFluid [14] included in NetBeans 7.3 [4]. Input-output
profiling (Section [3.2)) uses ASM-based instrumentation [9]
to inject bytecode that traverses fields. For some container
classes, the flattened data representation (Definition [I)) con-
tains internal details that are not necessary to determine
whether two objects are conceptually equivalent. To deal
with such classes, our implementation provides type-specific
representations for arrays and for all classes implementing
java.util.Collection Or java.util.Map. Non-map col-
lections and arrays are represented as a list of elements.
Maps are represented as a list of key-value pairs. Memoizelt
summarizes flattened data representations into hash values
using the MurmurHash3 hash function [2[], writes input-output
tuples to a trace file, and analyses the file offline as described
in Algorithm [I] and Section For clustering optimiza-
tion opportunities (Section [3.3), Memoizelt uses Soot [41]]
to obtain call graphs. Our current implementation assumes
that heap objects are not shared between multiple concurrent
threads.

5. Evaluation

We evaluate the effectiveness of the Memoizelt performance
bug detection approach by applying it to widely used Java
programs. The analysis discovers nine memoization oppor-
tunities that give rise to speedups between 1.04x and 1.27x
with the profiling input, and up to 12.93x with other inputs.
Four of these nine memoization opportunities have already
been confirmed by the developers in reaction to our reports.
In the ranked list of methods reported by Memoizelt, the
memoization opportunities are first, second, or third for the
respective program. In contrast, traditional CPU time profil-
ing often hides these opportunities behind dozens of other
methods and fails to bring them to the developer’s attention.

5.1 Experimental setup

Table [2]lists the programs and inputs used in the evaluation.
We use all single-threaded programs from the DaCapo 2006-
10-MR2 [8] benchmark suite (antlr, bloat, chart, fop, luin-
dex, and pmd)E] In addition we analyze Apache POI (a li-
brary for manipulating MS Office documents, 4,538 classes),
the content analysis toolkit Apache Tika (13,875 classes),
the static code checker Checkstyle (1,261 classes), and the
Java optimization framework Soot (5,206 classes).

We apply Memoizelt to each program with a profiling
input. Since the speedup obtained by a cache depends on
the input, we also experiment with other inputs to explore

3We exclude jython because its use of custom class loading breaks our
instrumentation system. The remaining benchmarks are excluded because
they are multi-threaded.

2015/8/24

Table 2: Programs and inputs used in the evaluation, and a comparison between the iterative and exhaustive approaches.
“Time” means the time for running the entire analysis (in minutes). “TO” means timeout. “Opp.” is the number of reported
opportunities. Ky qq is the maximum depth explored by Algorithm[I} The last column indicates whether the iterative approach

outperforms the exhaustive approach.

Program Description Profiling input Other input(s) ‘ Exhaustive Iterative Iterative
‘ Time Opp. | Time Opp. Kkmax ‘ wins
Apache POI 3.9 Convert spreadsheets to text ~ Grades (40KB) Statistics (13.5MB) 37 3 23 3 16 v
Apache Tika 1.3 Excel ~ Convert spreadsheets to text ~ Two files (260KB) Ten files (13.9MB) 56 1 58 1 64 X
Apache Tika 1.3 Jar Convert jar files to text Checkstyle, Gson rt.jar, Soot 35 2 41 2 64 X
Checkstyle 5.6 Check source code Checkstyle itself Soot 22 2 6 2 64 v
Soot ae0cec69c0 Optim. & validate Java proj. 101 classes Soot itself TO - TO 13 1 v
DaCapo-antlr Benchmark input Default Large TO - TO 3 16 v
DaCapo-bloat Benchmark input Default Large TO - TO 4 8 v
DaCapo-chart Benchmark input Default Large 2 0 2 0 8 v
DaCapo-fop Benchmark input Default (none) TO - 18 2 128 v
DaCapo-luindex Benchmark input Default Large TO - 32 0 4 v
DaCapo-pmd Benchmark input Default Large TO - TO 1 8 v

the potential benefit of adding a cache. For DaCapo, we
use the “default” inputs for profiling and the “large” inputs
(if available) as additional inputs. For the other programs,
we use typical inputs, such as a spreadsheet with student
grades for the spreadsheet conversion tool Apache POI, or
the Java source code of CheckStyle for the static analysis
CheckStyle. Columns 3 and 4 of Table 2] summarize the
inputs.

For each profiling input, we run Memoizelt until Algo-
rithm [I] has fully explored all memoization candidates or
until a one hour timeout occurs. All experiments are done
on an eight-core machine with 3GHz Intel Xeon processors,
8GB memory running 64-bit Ubuntu Linux 12.04.2 LTS,
Java 1.6.0_27 using OpenJDK IcedTea6 1.12.5, with 4GB of
heap assigned to the VM. We set the minimum average exe-
cution time ¢,,,;,, to 5us because it filters most short methods,
such as accessor methods, in our environment. To study the
overhead of the profiler with a large set of memoization can-
didates, we set the minimum relative execution time 7,,,;,, to
0.25%; to evaluate the reported memoization opportunities,
we use the more realistic r,,,;, = 1%. For pruning reports,
we set the minimum hit ratio h,,,;,, to 50%.

To measure the performance of the DaCapo benchmarks,
we use their built-in steady-state measurement infrastruc-
ture. Because the other programs are relatively short-running
applications, we measure startup performance by repeatedly
running them on a fresh VM, as suggested by [16]. To as-
sess whether memoization yields a statistically significant
speedup, we measure the execution time 30 times each with
and without the cache, and compute the confidence interval
for the difference (confidence level 95%). We report a per-
formance difference if and only if the confidence interval
excludes zero, i.e., the difference is statistically significant.

5.2 Memoization opportunities found

Memoizelt reports potential memoization opportunities for
eight of the eleven programs. We inspect the three high-

est ranked opportunities for each program and implement
a patch that adds a cache for the most promising opportu-
nities (Table [3). The second-to-last and the last column of
Table [3|show the speedup when using the profiling input and
another input, respectively. When adding a cache, we fol-
low the implementation strategy suggested by Memoizelt.
As we have only limited knowledge of the programs, we add
a cache only if it certainly preserves the program’s seman-
tics. We use the programs’ unit tests to check the correctness
of the modified programs.

The memoization opportunities detected by Memoizelt
confirm two important design decision. First, considering
complex objects in addition to primitive input and output
values is crucial to detect various memoization opportuni-
ties. Five of the nine reported methods in Table [3] involve
non-primitive values. IDs [I]and [5|have a complex target ob-
ject; IDs] [6l and [§] have non-primitive target objects and
non-primitive return values; ID [/| returns an integer array.
These results underline the importance of having an analy-
sis able to analyze complex objects. Second, several meth-
ods have side effects but nevertheless are valid optimization
opportunities (IDs Bl [6l [7] and [8). These methods are
memoizable because the side effects are redundant. These
examples illustrate how our approach differs from checking
for side effect-free methods.

In the following, we describe representative examples of
detected memoization opportunities.

Apache POI The motivating example in Listing [I]| is a
memoization opportunity that Memoizelt finds in Apache
POI (ID[2). The analysis reports the method as memoizable
because most calls (99.9%) pass a string that was already
passed earlier to the method. The memoization opportunity
is also reported when analyzing Apache Tika Excel (ID
because Tika builds upon POI. Adding a single element
cache that returns a cached value if the string is the same
as in the last call of the method gives speedups of 1.12x

2015/8/24

Table 3: Summary of memoization opportunities found by Memoizelt. “Rel. time” is the percentage of execution time spent
in the method with the profiling input. The “Rank” columns indicate at which position a method is reported by inclusive CPU
time profiling, self-time CPU time profiling, and Memoizelt, respectively. All speedups are statistically significant, otherwise
we write “-””. For DaCapo-fop there is only a single input because DaCapo’s large and default inputs are the same.

ID Program Method ‘ Rel. Calls Pot. hit Rank Speedup

‘ time ratio CPUtime Memoizelt ‘ Profiling Other

| (%) (%) Incl. Self \ input input
1 Apache POI HSSFCellStyle.getDataFormatString() 124 7,159 99.8 12 170 1| 111+001 1.92+0.01
2 Apache POI DateUtil.isADateFormat(int,String) 53 3,630 99.9 27 6 2| 1.07 +0.01 1.12 + 0.01
3 Apache Tika Excel DateUtil.isADateFormat(int,String) 1.0 4,256 999 189 10 1 - 1.25 + 0.02
4 Apache Tika Jar CompositeParser.getParsers(ParseContext) 142 4,698 80.9 27 2 1] 1.09 +0.01 1.12 £ 0.02
5 Checkstyle LocalizedMessage.getMessage() 1.3 6,138 724 110 12 2 - 995+0.10
6 Soot Scene.getActiveHierarchy() 18.4 201 99 23 253 1] 127+003 12.93+0.05
7 DaCapo-antlr BitSet.toArray() 14.4 19,260 96.3 36 6 1] 1.04 +0.03 1.05 + 0.02
8 DaCapo-bloat PhiJoinStmt.operands() 12.0 6,713 50.9 49 52 3| 1.08 +0.03 -
9 DaCapo-fop FontInfo.createFontKey(String,String,String) | 2.2 5,429 98.9 105 2 2 | 1.05 £ 0.01 NA

I class LocalizedMessage {

2 // set at startup

3 private static Locale sLocale = Locale.getDefault();
4 private final String mKey; // set in constructor
5 private final Object[] mArgs; // set in constructor
6 private final String mBundle // set in constructor

8 String getMessage() {

9 try {

10 // use sLocale to get bundle via current classloader
11 final ResourceBundle bundle = getBundle (mBundle) ;

12 final String pattern = bundle.getString(mKey) ;
13 return MessageFormat.format (pattern, mArgs);
14 } catch (final MissingResourceException ex) {

15 return MessageFormat.format (mKey, mArgs);

16 }
17 }
18 }

Listing 2: Memoization opportunity in Checkstyle.

and 1.25x for Apache POI and Apache Tika, respectively.
We reported this problem and another performance problem
(IDs[I]and 2) to the Apache POI developers who confirmed
and fixed the problems.

Checkstyle The LocalizedMessage class of Checkstyle
represents messages about violations of coding standards
and its getMessage method constructs and returns a mes-
sage string. Listing |2| shows the implementation of the
method. The message string for a particular instance of
LocalizedMessage i always the same because the message
depends only on final fields and on the locale, which does not
change while Checkstyle is running. Nevertheless, Check-
style unnecessarily re-constructs the message at each invo-
cation. Memoizelt detects this redundancy and suggests to
memoize the message. Memoization does not lead to a mea-
surable speedup for the profiling input, which applies Check-
style to its own source code because the Checkstyle develop-
ers adhere to their own coding standards. As an alternative
input, we configure Checkstyle to search for duplicate code
lines, which leads to many calls of getMessage. For this al-
ternative input, adding a cache yields a 2.80x speedup (not

reported in Table [3). When applying Checkstyle to a larger
code base (the 160 KLoC of the Soot project), the benefits
of the cache become even more obvious: the execution time
is reduced from 6—7 minutes to about 40 seconds, giving a
speedup of 9.95x.

Soot Memoizelt identifies a memoization opportunity for
a method, Scene.getActiveHierarchy, that already has a
cache that is accidentally invalidated more often than neces-
sary. The method either computes the class hierarchy of the
program analyzed by Soot or reuses the already-computed
hierarchy. Memoizelt reveals this opportunity because the
method repeatedly recomputes the same hierarchy in one of
the last phases of Soot, i.e., at a point in time when the class
hierarchy does not change anymore. The problem is that the
existing cache is flushed every time before Soot validates
the intermediate representation of a method body. To avoid
redundantly computing the hierarchy, it suffices to remove
the unnecessary flushing of the cache, which gives 1.27x
speedup with the profiling input. An alternative, larger input
that runs Soot on its own source code yields a speedup of
12.93x. The speedup for the second input is so much higher
because the second input triggers significantly more recom-
putations of the class hierarchy than the profiling input. We
reported this performance bug to the Soot developers who
confirmed and fixed the problem.

5.3 Suggestions for implementing caches

When implementing caches for the reported optimization
opportunities, we follow the implementation strategies sug-
gested by Memoizelt. Table[]lists the data that the approach
computes to suggest a cache implementation and the kind of
cache that Memoizelt suggests. For example, for memoiza-
tion opportunity [] (as listed in Table [3), Memoizelt’s simu-
lation of different kinds of caches shows that a global single-
element cache would achieve only 21% hits and require
to invalidate the cache, whereas an instance-level single-
element cache would have 82% hits and not require inval-

2015/8/24

Table 4: Data computed for suggesting a cache implementa-
tion and suggested implementation.

1D Instance-level Global Suggestion
Single Multi Single Multi
HR I |HR S I |HR I HR S 1
1 100 no|{100 1 no| 88 no | 100 12 no single, global
2 - - - - - 97 no | 100 3 no single, global
3 - - - - - 97 no | 100 3 no single, global
4 82 no| 79 1 no| 21 yes| 72 10 yes single, instance
5 72 no| 72 1 no| 21 no 72 1,696 no single, instance
6 99 no| 99 1 no| 50 no | 99 2 no single, instance
7 96 no| 96 1 no 5 no 96 708 no single, instance
8 60 no| 60 1 no 4 no 60 2,655 no single, instance
9 - - - - - 41 no 99 57 no multi, global

HR=hit ratio, I=needs invalidation, S=size

idation. Therefore, Memoizelt suggests to exploit this mem-
oization opportunity with an instance-level single-element
cache. For all but one of the memoization opportunities in
Table [following Memoizelt’s suggestion yields a prof-
itable optimization. The one exception is memoization op-
portunity [/} where the first suggestion does not lead to any
speedup, but where the second suggestion, a global multi-
element cache, turns out to be profitable. Such suboptimal
suggestions are possible because the suggestions are based
on a simple model of caching behavior, which, for example,
ignores the effects of JIT optimizations.

Example of cache implementation. Listing (3| shows a
cache implementation that exploits optimization opportu-
nity[T]in method getbataFormatstring (). Following Mem-
oizelt’s suggestion to implement a global single element
cache, we add three static fields (lines [3] to [6): Fields
lastDateFormat and lastFormats store the input key of the
cache; field cache contains the cached result. We modify
the method so that it returns the cached result if the stored
inputs match the current inputs (lines [9] to [I3). Otherwise,
the method executes as usually and fills the cache. Mem-
oizelt suggests that the cache may not require invalidation
because the profiled executions do not trigger any path that
requires invalidation. However, inspecting the source code
reveals that cloneStyleFrom (HSSFCellStyle) writes into
fields that may invalidate a previously stored result. To en-
sure that caching preserves the program’s semantics for all
execution paths, we invalidate the cache in lines 23] to 23]
We reported this cache implementation to the Apache POI
developers who integrated the change into their code.

5.4 Precision of the analysis

The effectiveness of an approach to find performance bugs
largely depends on how quickly a developer can identify
valuable optimization opportunities based on the output of
the approach. Memoizelt reports a ranked list of methods,
and we expect developers to inspect them starting at the top.
As shown by the “Rank, Memoizelt” column of Table El,

I class HSSFCellStyle {

2 // inputs

3 private static short lastDateFormat = INVALID VALUE;
4 private static List<FormatRecord> lastFormats = null;
5 // output

6 private static String cache = null;

8 String getDataFormatString() {

9 if (cache != null &&

10 lastDateFormat == getDataFormat () &&

11 lastFormats.equals (_workbook.getFormats())) {

12 return cache;

13 }

14 lastFormats = _workbook.getFormats() ;

15 lastDateFormat = getDataFormat () ;

16 cache = getDataFormatString(workbook) ;

17 return cache;

18 }

19

20 void cloneStyleFrom(HSSFCellStyle source) {
21 _format.cloneStyleFrom(source._format);
2 if (_workbook != source._workbook) {

23 lastDateFormat = INVALID VALUE; // invalidate cache
24 lastFormats = null;

25 cache = null;

26 Y2

71}
Listing 3: Cache implementation in Apache POL.

the memoization opportunities that give rise to speedups are
quickly found: five are reported as the top opportunity of the
program and three are ranked as the second opportunity.

Comparison with CPU time profiling. 'We compare Mem-
oizelt to two state-of-the-art profiling approaches: (i) Rank
methods by inclusive CPU time, that is, including the time
spent in callees, and (ii) rank methods by CPU self-time,
that is, excluding the time spent in callees. In Table [3] the
“Rank, CPU time” columns show the rank that CPU time
profiling assigns to the methods with memoization opportu-
nities. Both CPU time-based approaches report many other
methods before the opportunities found by Memoizelt, il-
lustrating a weakness of CPU time profiling: It shows where
time is spent but not where time is wasted [31]]. Instead of
overwhelming developers with hot but not necessarily op-
timizable methods, Memoizelt points developers to a small
set of methods that are likely candidates for a simple and
well-known optimization.

Non-optimizable methods. Memoizelt may report meth-
ods that are not easily memoizable. We find two causes
for such reports. First, some methods already use memo-
ization but are reported because their execution time is rel-
atively high despite the cache. Even though reports about
such methods do not reveal new optimization opportunities,
they confirm that our analysis finds valid memoization op-
portunities and helps the developer understand performance
problems.

Second, some methods have non-redundant side effects
that the analysis does not consider. For example, a method
reads a chunk of data from a file and advances the file
pointer. Although the method may return the same chunk
of data multiple times, its behavior cannot be replaced by

2015/8/24

class CachingBloatContext extends PersistentBloatContext {
Map fieldInfos; // Declared and initialized in superclass

public FieldEditor editField(MemberRef field) {

// Lookup in existing cache
6 FieldInfo info = fieldInfos.get (field);

if (info == null) {

8 // Compute field infos and store them for reuse
9 FieldInfo[] fields = /* Get declaring class */
10 for (int i = 0; i < fields.length; i++) {
11 FieldEditor fe = editField(fields[i]);

12 if (/* field[i] is field */) {

13 fieldInfos.put (field, fields[i]);
14 return fe;

15 }

16

17 }

18

19 }

20 return editField(info);

2 1)
Listing 4: Non-memoizable method in DaCapo-bloat.

returning a cached value because the file pointer must be
advanced to ensure reading the expected data in later invo-
cations of the method. In most cases, the analysis effectively
addresses the problem of non-redundant side effects by con-
sidering the target object as part of the call’s input, but the
analysis fails to identify some side effects, such as advancing
file pointers. A strict side effect analysis [47] could avoid re-
porting such methods but would also remove six of the nine
valid optimization opportunities that Memoizelt reveals, in-
cluding the 12.93x-speedup opportunity in Soot.

Another potential cause for reporting non-memoizable
methods, which does not occur in our experiments, are non-
deterministic methods. Memoizelt can filter such methods
by checking for inputs that lead to multiple outputs.

Listing] shows an example of a memoization candi-
date in Dacapo-bloat, which we cannot further optimize be-
cause the method already uses memoization. At line [6] the
parameter field is used as the key of an instance-level,
multi-element cache. If field is not yet in the cache, then
the associated field information is created and added to the
cache. Memoizelt reports this method because the hit ratio
is 57.65%, which confirms the developers’ intuition to im-
plement a cache.

5.5 [Iterative vs. exhaustive profiling

We compare Memoizelt’s approach of iteratively refining
memoization candidates to a more naive approach that ex-
haustively explores all input-output tuples in a single execu-
tion. The last six columns of Table[2]show how long both ap-
proaches take and how many opportunities they report. The
last column shows that the iterative approach clearly outper-
forms exhaustive exploration. For six programs, exhaustive
exploration cannot completely analyze the execution within
one hour (“TO”) and therefore does not report any opportu-
nities, whereas the iterative approach reports opportunities
even if it does not fully explore all methods within the given
time. For three programs, both approaches terminate and the

iterative approach is faster. For the remaining two programs
both approaches takes a comparable amount of time, while
reporting the same opportunities.

5.6 Performance of the analysis

Our prototype implementation of the Memoizelt approach
yields actionable results after at most one hour (Table[2} col-
umn “Iterative, Time”) for all programs used in the evalua-
tion. Therefore, we consider the approach to be appropriate
as an automated tool for in-house performance analysis.

The runtime overhead imposed by Memoizelt depends
on the exploration depth k. Figure [2] shows the profiling
overhead (left axes) throughout the iterative refinement al-
gorithm, i.e., as a function of the exploration depth k. The
profiling overhead imposed by Memoizelt is influenced by
two factors. On the one hand, a higher depth requires the
analysis to explore the input and output of calls in more de-
tail, which increases the overhead. On the other hand, the
analysis iteratively prunes more and more methods while
the depth increases, which decreases overhead. The interplay
of these two factors explains why the overhead does not in-
crease monotonically for some programs, such as DaCapo-
fop, and Apache Tika Excel. In general, we observe an in-
creasing overhead for larger values of k because recording
large object graphs requires substantial effort, even with a
small set of memoization candidates.

Figure [2] also shows the number of memoization can-
didates (right axes) depending on the exploration depth.
The figure illustrates that the iterative approach quickly re-
moves many potential memoization opportunities. For ex-
ample, Memoizelt initially considers 30 methods of Apache
Tika Excel and reduces the number of methods to analyze
to 15, 9, and 6 methods after one, two, and three iterations,
respectively.

6. Limitations

Details of cache implementation. Memoizelt identifies
memoization opportunities and outlines a potential cache
implementation, but leaves the decision whether and how ex-
actly to implement memoization to the developer. In partic-
ular, the developer carefully must decide whether memoiza-
tion might break the semantics of the program and whether
the benefits of memoization outweigh its cost (such as in-
creased memory usage). Furthermore, Memoizelt’s sugges-
tions may not be accurate because they are based on a limited
set of executions. In particular, a cache may require invali-
dation even though Memoizelt does not suggest it.

Input selection. As all profiling approaches that we are
aware of, including traditional CPU time profiling, Memo-
izelt requires the developer to provide input that drives the
execution of the program. The memoization candidates pro-
vided by Memoizelt are valid only for the given inputs, i.e.,
other inputs may lead to other sets of memoization candi-
dates.

2015/8/24

DaCapo-antlr DaCapo-bloat DaCapo-chart
— — 8
9501 [kmar =16 Emaz = 8 s = 8
232_\ timeout 150 150 timeout 150 g: || fully explored =25
o 150 100 100 100 5 20
S 1004 47 15
£ oo 50 50! 50 3]
3 50 24 10
it x 0 x
= mrT T T mrT T T
g 1 16 64 1 16 64 1 16 64
~
E Checkstyle Soot Apache Tika Jar
>
144f L 550 | 140 140 .
@) 1o 120 200 0 Jood 50
F100 - 190 100! F Fmas = 64 40
10 80 450 00 fully explored
8! Lo 400, F100 507! 30
O] B =0t do ggg_ timeont g0 40 20
4 ully explored |- T |
ol o 20 550 o = 0
TT T T mrT T T Y mrT T T
1 16 64 1 16 64 1 16 64

DaCapo-fop DaCapo-luindex DaCapo-pmd

1t =80 K 4 15
YT Fonar = 128 60 Far = 4 fomar — 8 150
150 fully explored | 0 50| fully explored 4 120 timeout
| 60 100
] 40 30 —100
100 L0 80
30 20 60 -
501 - 20) =50
20 10 10 40 5
F Lo 0 20 Lo =
T 1 T T T 0 ,_g
1 16 64 1 16 64 1 16 64 ,.5
g
Apache Tika Excel Apache POI O
700 o — 64|30 1400 i kmaz =16 =30
600 fully explored [-25 1200 fully explored
500! | 9o 1000 25
400 15 800 | 20 —%— Overhead
300 5600 15 — - Candidates
200 10 400t 10
1004 A, =5 200 L5
0= 70 03— T

1 16 64

Exploration depth &

Figure 2: Number of memoization candidates and overhead depending on the exploration depth k. The maximum value for k

is indicated as k44 -

7. Related Work
7.1 Detecting performance problems

Various dynamic analyses find excessive memory and CPU
usage, e.g, by searching for equal or similar objects [28 43,
overuse of temporary structures [[15]], under-utilized or over-
utilized containers [44], unnecessarily copied data [45]], ob-
jects where the cost to create them exceeds the benefit from
using them [46], and similar memory access patterns [31]].
Yan et al. use reference propagation profiling to detect com-
mon patterns of excessive memory usage [48]]. Jovic et al.
propose a profiler to identify long latencies of UI event han-
dlers [24]. All these approaches focus on particular “symp-
toms” of performance problems, which helps developers to
identify a problem but not to find a fix for it. In contrast,
Memoizelt focuses on a well-known “cure”, memoization,
and searches for methods where this cure is applicable.

Several profiling approaches help developers find perfor-
mance bugs due to asymptotic inefficiencies [11} [17, [51].
Xiao et al. describe a multi-execution profiler to find meth-
ods that do not scale well to large inputs [42]. These ap-
proaches relate the input of a computation to execution time
to help developers reduce the complexity of the computa-
tion. Instead, Memoizelt relates the input of a computation
to its output to help developers avoid the computations.

Test generation can drive analyses that reveal perfor-
mance and scalability problems. Burnim et al. generate tests
to trigger the worst-case complexity of a program [10].
SpeedGun [33]] creates tests for automated performance re-
gression testing of concurrent software. Pradel et al. propose
an algorithm that generates sequences of Ul events to expose
responsiveness problems in web applications [34]. As all dy-
namic analyses, our approach relies on inputs to exercise a
program, and combining our work with test generation may
further increase Memoizelt’s effectiveness.

7.2 Understanding performance problems

Approaches to diagnose performance problems include sta-
tistical debugging, which identifies program predicates that
correlate with slow executions [39], the analysis of idle times
in server applications caused by thread synchronization is-
sues or excessive system activities [S]], and dynamic taint
analysis to discover root causes of performance problems
in production software [6]]. Other approaches analyze ex-
ecution traces [49] or stack traces [21] from a large num-
ber of executions to ease performance debugging. These ap-
proaches are aimed at understanding the root cause of a per-
formance problem, whereas Memoizelt discovers problems
that a developer may not be aware of.

7.3 Fixing performance problems

Nistor et al. propose a static analysis that detects loop-related
performance problems and that proposes source code trans-
formations to fix these problems [32]. Memoizelt is orthog-
onal to their work because it addresses a different class of
performance bugs.

7.4 Compiler optimizations

Compilers and runtime systems can automatically memo-
ize the results of some computations. Ding et al. propose
a profiling-based, static compiler optimization that identi-
fies deterministic code segments and that adds memoization
via a source to source transformation [13]]. Their approach
seems to be limited to primitive input values, whereas we
address the problem of summarizing large object structures.
Xu et al. propose a dynamic purity analysis and apply it in
a compiler optimization that caches method return values
of dynamically pure methods [47]]. Their analysis consid-
ers the parameters of a method as its only input, and adds a
global cache if a method is found to be a memoization can-
didate. Guo et al. propose an optimization that adds caches
to long running functions for programs written in a dynami-

2015/8/24

cally typed language [20]. They target applications that elab-
orate data in stages and add caches after each stage. As
conservative compiler optimizations, the above approaches
can memoize a computation only if it is side effect-free. As
shown in Section[5.2] these optimizations miss various mem-
oization opportunities identified by Memoizelt because the
methods have redundant side effects. Shankar et al. propose
a dynamic analysis that identifies methods that create many
short-lived objects and a runtime optimization that inlines
those methods to enable other optimizations [37]. Shankar
et al. propose a code specialization technique embedded in
a JIT compiler that optimizes execution paths based on run-
time values observed during execution [38]]. Costa et al. pro-
pose a JIT optimization that speculatively specializes func-
tions based on previously observed parameters [12]]. Com-
bined with other optimizations, such as constant propaga-
tion, their approach can have an effect similar to automat-
ically added memoization. In contrast to Memoizelt, their
work focuses in primitive values instead of complex object
structures. Sartor et al. [36] and Huang et al. [22] use a
compiler and runtime infrastructure to optimize programs to-
wards better usage of hardware caches. While memoization
can indirectly affect hardware caching, our work focuses on
software caches where performance is improved by avoiding
repetitive expensive computations.

JITProf [18] profiles JavaScript programs to identify code
locations that prohibit profitable JIT optimizations. Opti-
mization coaching [40] aims at improving the feedback
given by a compiler to the programmer to help the pro-
grammer enable additional optimizations. These approaches
optimize a program for a particular compiler or execu-
tion environment, whereas Memoizelt identifies platform-
independent optimization opportunities.

7.5 Other related work

Ma et al. empirically study the effectiveness of caching web
resources loaded in a mobile browser and suggest strategies
for improving the effectiveness [27]. Our work shares the
idea of analyzing caching opportunities but addresses redun-
dant computations instead of redundant transfers of data over
the network.

Depth-first iterative-deepening is a tree search algorithm
that repeatedly applies a depth-first search up to an itera-
tively increasing depth limit [25]. Our iterative refinement
of the dynamic analysis shares the idea of iteratively increas-
ing the depth of exploration to reduce the complexity of the
problem. Our approach differs from iterative-deepening be-
cause we do not perform a tree search and because we do
not stop once a solution is found but prune methods from
the search space that are guaranteed not to be memoization
opportunities.

Incremental computation, a technique to update the re-
sults of a computation when the input changes [35], mem-
oizes partial results across program executions. Instead,

Memoizelt focuses on memoization opportunities within a
single execution.

Biswas et al. present DoubleChecker, an atomicity
checker that executes the program twice, with an impre-
cise and a precise analysis, respectively [7]]. Similar to our
approach, DoubleChecker increases precision based on the
results of a less precise analysis. Their approach may miss
some atomicity violations due to different thread-schedules.
In contrast to DoubleChecker, Memoizelt does not bound
the number of iterations a-priori and guarantees that the iter-
ative analysis does not miss any memoization opportunities.

8. Conclusion

Performance bugs are difficult to detect and fix. To help de-
velopers with these tasks, we present Memoizelt, a dynamic
analysis that reveals methods that can be optimized through
memoization and that gives hints on applying this well-
known optimization. The approach reports methods where
memoization is likely to be beneficial because the method
repeatedly transforms the same inputs into the same outputs.
Key to scaling the approach to complex object-oriented pro-
grams is an iterative analysis algorithm that increases the de-
gree of detail of the analysis while shrinking the set of meth-
ods to analyze. We apply the approach to real-world Java
programs and demonstrate that Memoizelt finds nine previ-
ously unknown memoization opportunities. Adding memo-
ization to these methods as suggested by Memoizelt reduces
the program execution time up to a factor of 12.93x. Our
work lays the foundation for a practical tool that supports
developers in improving their code’s efficiency by providing
them actionable reports about performance bugs.

Acknowledgements

We thank Michael Bond and the anonymous reviewers for their
valuable comments and suggestions. This research is supported, in
part, by SNF Grant CRSII2_136225 (FAN: Foundations of dynamic
program ANalysis), by the German Federal Ministry of Education
and Research (BMBF) within EC SPRIDE, and by the German
Research Foundation (DFG) within the Emmy Noether Project
“ConcSys”.

References
[1] Apache Poi. http://poi.apache.org.
[2] Google Guava.

guava-libraries.

http://code.google.com/p/

[3] Memoizelt - Repository.
memoizeit.

https://github.com/lucadt/

[4] NetBeans. http://www.netbeans.orgl

[5] E. R. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance
analysis of idle programs. In OOPSLA ’10, pages 739-753.

[6] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production. In OSDI ’12, pages
307-320.

[7] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. Doublechecker:
Efficient sound and precise atomicity checking. In PLDI ’14, pages
28-39, 2014.

[8] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA ’06, pages 169—190.

2015/8/24

http://poi.apache.org
http://code.google.com/p/guava-libraries
http://code.google.com/p/guava-libraries
https://github.com/lucadt/memoizeit
https://github.com/lucadt/memoizeit
http://www.netbeans.org

[9] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation
tool to implement adaptable systems. In Adaptable and extensible
component systems, Nov. 2002.

[10] J. Burnim, S. Juvekar, and K. Sen. WISE: Automated test generation
for worst-case complexity. In ICSE "09, pages 463-473.

[11] E. Coppa, C. Demetrescu, and I. Finocchi. Input-sensitive profiling.
In PLDI ’12, pages 89-98.

[12] 1. Costa, P. Alves, H. N. Santos, and F. M. Q. Pereira. Just-in-time
value specialization. In CGO 13, pages 1-11.

[13] Y. Ding and Z. Li. A compiler scheme for reusing intermediate
computation results. In CGO 04, pages 279-290, 2004.

[14] M. Dmitriev. Design of JFluid: a profiling technology and tool based
on dynamic bytecode instrumentation. Technical Report SMLI TR-
2003-125, 2003.

[15] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis for perfor-
mance understanding of framework-based applications. In ISSTA ’07,
pages 118-128.

[16] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In OOPSLA ’07, pages 57-76.

[17] S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical
computational complexity. In FSE 07, pages 395-404.

[18] L. Gong, M. Pradel, and K. Sen. JITProf: Pinpointing JIT-unfriendly
JavaScript code. In FSE ’15, 2015.

[19] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In SIGPLAN Symposium on Compiler Construction
'82, pages 120-126.

[20] P. J. Guo and D. Engler. Using automatic persistent memoization to
facilitate data analysis scripting. In ISSTA '11, pages 287-297.

[21] S.Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging
in the large via mining millions of stack traces. In ICSE ’12, pages
145-155.

[22] X. Huang, S. M. Blackburn, and K. S. McKinley. The garbage
collection advantage: improving program locality. In OOPSLA ’04,
pages 69-80.

[23] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI ’12, pages 77-88.

[24] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can:
performance bug detection in the wild. In OOPSLA 11, pages 155-
170.

[25] R.E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artif. Intell., pages 97-109, 1985.

[26] Y. Liu, C. Xu, and S. Cheung. Characterizing and detecting perfor-
mance bugs for smartphone applications. In /CSE ’14, pages 1013—
1024.

[27] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie. Measurement
and analysis of mobile web cache performance. In WWW ’15, pages
691-701.

[28] D. Marinov and R. O’Callahan. Object equality profiling. In OOPSLA
’03, pages 313-325.

[29] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Evaluating
the accuracy of Java profilers. In PLDI ’10, pages 187-197.

[30] K. Nguyen and G. Xu. Cachetor: Detecting cacheable data to remove
bloat. In FSE ’13, pages 268-278.

[31] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: detecting per-
formance problems via similar memory-access patterns. In /CSE 13,
pages 562-571, 2013.

[32] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. CARAMEL.: Detecting
and Fixing Performance Problems That Have Non-Intrusive Fixes. In
ICSE 15, 2015.

[33] M. Pradel, M. Huggler, and T. R. Gross. Performance regression
testing of concurrent classes. In ISSTA ’14, pages 13-25, 2014.

[34] M. Pradel, P. Schuh, G. Necula, and K. Sen. EventBreak: Analyzing
the responsiveness of user interfaces through performance-guided test
generation. In OOPSLA ’14, pages 33—47, 2014.

[35] W. Pugh and T. Teitelbaum. Incremental computation via function
caching. In POPL 89, pages 315-328.

[36] J. B. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang. Cooper-
ative Caching with Keep-Me and Evict-Me. In INTERACT ’05, pages
1-11.

[37] A. Shankar, M. Arnold, and R. Bodik. Jolt: lightweight dynamic
analysis and removal of object churn. In OOPSLA ’08, pages 127—
142.

[38] A. Shankar, S. S. Sastry, R. Bodik, and J. E. Smith. Runtime special-
ization with optimistic heap analysis. In OOPSLA ’05, pages 327-343,
2005.

[39] L. Song and S. Lu. Statistical debugging for real-world performance
problems. In OOPSLA ’14, pages 561-578.

[40] V. St-Amour, S. Tobin-Hochstadt, and M. Felleisen. Optimization
coaching: optimizers learn to communicate with programmers. In
OOPSLA 12, pages 163-178.

[41] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sun-
daresan. Soot - a Java bytecode optimization framework. In CASCON
’99, pages 125-135. IBM, 1999.

[42] X. Xiao, S. Han, D. Zhang, and T. Xie. Context-sensitive delta infer-
ence for identifying workload-dependent performance bottlenecks. In
ISSTA 13, pages 90-100.

[43] G. Xu. Finding reusable data structures. In OOPSLA ’12, pages 1017—
1034, 2012.

[44] G.Xuand A. Rountev. Detecting inefficiently-used containers to avoid
bloat. In PLDI ’10, pages 160-173, 2010.

[45] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky. Go with
the flow: profiling copies to find runtime bloat. In PLDI ’09, pages
419-430, 2009.

[46] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Se-
vitsky. Finding low-utility data structures. In PLDI ’10, pages 174—
186, 2010.

[47] H. Xu, C. J. E. Pickett, and C. Verbrugge. Dynamic purity analysis for
Java programs. In PASTE ’07, pages 75-82.

[48] D. Yan, G. Xu, and A. Rountev. Uncovering performance problems in
Java applications with reference propagation profiling. In ISCE 12,
pages 134-144.

[49] X. Yu, S. Han, D. Zhang, and T. Xie. Comprehending Performance
from Real-world Execution Traces: A Device-driver Case. In ASPLOS
’14, pages 193-206.

[50] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on
performance bugs. In MSR ’12, pages 199-208.

[51] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In PLDI ’12,
pages 67-76.

2015/8/24

	Introduction
	Overview and Example
	Approach
	Time and frequency profiling
	Input-output profiling
	Representing input-output data
	Comparing input-output data
	Iterative refinement of memoization candidates
	Field access profiling

	Clustering and ranking
	Suggesting a cache implementation

	Implementation
	Evaluation
	Experimental setup
	Memoization opportunities found
	Suggestions for implementing caches
	Precision of the analysis
	Iterative vs. exhaustive profiling
	Performance of the analysis

	Limitations
	Related Work
	Detecting performance problems
	Understanding performance problems
	Fixing performance problems
	Compiler optimizations
	Other related work

	Conclusion

